簡易檢索 / 詳目顯示

研究生: 陳俊宏
Chen, Chun-Hong
論文名稱: 利用介電泳和液體介電泳產生單一粒子環境之研究
Creation of Single-Particle Environment by Positive Dielectrophoresis and Liquid Dielectrophoresis
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 67
中文關鍵詞: 介電泳液體介電泳微流體晶片
外文關鍵詞: dielectrophoresis, liquid dielectrophoresis, microfluidic chip
相關次數: 點閱:86下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在生物細胞的傳統方法量測中,細胞參數值往往藉由量測一群細胞的綜合反應參數後,再取其平均值。然而,此數值無法正確地代表任何一個單一細胞的反應結果,甚至會模糊了各個細胞對同一環境可能會產生的差異性反應。此外,細胞之異質性在傳統方法上也是無法被評估出來的。因此,在單一粒子環境下有利於單細胞的分析。本研究以物理特性、電特性比細胞更為單純的乳膠粒子為對象,利用電操控微流體和粒子將其封存在一顆單一液珠中。並整合介電泳和液體介電泳在微流體晶片上產生只包含單一乳膠粒子之液珠。在研究中首先建立電路模型和流體動力學之模型去分析在雙板微流體晶片之下的微流體最低驅動電壓。並探討微流體晶片的所有參數如液體導電度、頻率、電極寬度、兩板間距離、各層材質厚度和表面張力對最低驅動電壓之影響。並根據推導出的理論預測公式去設計適合的電極來驅動晶片上的微流體。在獲得晶片中所有參數和最低驅動電壓的關係之後,再設計捕捉電極和液珠產生電極來產生只包含一顆乳膠粒子的液珠。產生只包含一顆乳膠粒子的液珠機制中有三大步驟:(1)利用液體介電泳力推動液體(2)待粒子靠近捕捉電極後,使用正介電泳力捕捉粒子(3)當捕捉到粒子之後,利用液體介電泳力來產生包含單液粒子之液珠。

    In conventional method for cellular measurement, studies measure the group of cells and then analyze the ensemble measurements. However, the data cannot represent the real state of individual cell. The approach cannot be used to predict the heterogeneity of individual cells. If the single cell environment can be built, it is easier to detect the metabolism and chemical material of the single cell in the environment. In the study, the polystyrene beads are utilized in the liquid since they have simple electric and physical characteristics. In this thesis, dielectrophoresis (DEP) and liquid dielectrophoresis (LDEP) are we integrated to create a droplet containing one single particle. At first, electric circuit model and electromechanical model were built to obtain the relationship between the minimum actuation voltage and the all parameters in the microfluidic chip such as frequency, liquid conductivity, gap height, material thickness, electrode width and surface tension. After obtaining the minimum actuation voltage, the designed electrode is used to trap a single particle and then create a droplet containing the single particle. The mechanism for droplet creation containing single particle contains three steps: (1) liquid is transported on the electrode by LDEP (2) when the particle is nearby the trapping region single particle is trapped by positive DEP. (3) after the single particle trapping, the process of the droplet creation is employed to create a droplet containing single particle.

    CONTENT ABSTRACT II ACKNOWLEDGEMENT III CONTENT IV LIST OF TABLES VI LIST OF FIGURES VII CHAPTER 1 INTRODUCTION 1 1.1 Background and motivation 1 1.2 Organization of the thesis 3 1.3 Research flowchart 4 CHAPTER 2 THEORY 6 2.1 EWOD and LDEP in electric circuit model of parallel-plate microfluidic chip 6 2.2 Electromechanical model for a liquid moving on parallel electrode 9 2.3 Dielectrophoresis 16 CHAPTER 3 MATERIALS AND METHODS 18 3.1 Design of electrode configuration for minimum actuation voltage test 18 3.2 Design of electrode configuration and mechanism for creating droplet with desired particles 20 3.3 Design of electrode configuration and mechanism for creating a droplet with the single particle 22 3.4 Fabrication 25 3.5 Experimental setup 29 CHAPTER 4 RESULTS AND DISCUSSION 31 4.1 Effect of the electrode width on minimum actuation voltage 31 4.2 Effect of the height, liquid conductivity and applied frequency on minimum actuation voltage 34 4.3 Differences between theoretical prediction and experimental data 41 4.4 Droplet creation containing particles 46 4.5 Creation of single particle environment 51 4.6 Modified CM factor and optimized operating frequency range for particle trapping and liquid manipulation 54 4.7 Simulation of particle trapping and immobilization 57 4.8 Other factors that affect creation of a droplet containing a single particle 59 CHAPTER 5 CONCLUSIONS 60 REFERENCES 62 PUBLICATIONS 66 LIST OF TABLES Table 1 Experimental parameters……………………………………………………...8 Table 2 Imaginary part of complex relative permittivity of water at various values of frequency and fluid conductivity……………………………………………………..40 LIST OF FIGURES Fig. 1 1 Research flowchart…………………………………………………………...5 Fig. 2.1 Electric circuit model of a parallel-plate mocrofluidic chip………………….8 Fig. 2.2 Schematic of the transient dynamic state of a droplet on two-plate devices (a) Top view of two-plate device, (b) cross-section view (A-A’) of two-plate device, and (c) cross-section view (B-B’) of two-plate device…………………………………...15 Fig. 2.3 Circuit model of microfluidic actuation in two-plate devices………….…....15 Fig. 3.1 Schematic of the electrode configuration: (a) different electrode width for the minimum actuation voltage test (b) different liquid conductivity and applied frequency for the minimum actuation voltage test……………………………..........19 Fig. 3.2 Top view of the electrode configuration for droplet creation…………….....21 Fig. 3.3 The process of creating a droplet with polystyrene beads…..........................21 Fig. 3.4 Electrode configuration for creating droplet with the single particle……….23 Fig. 3.5 Diagram of mechanism of creating a droplet containing a single polystyrene bead (a) Particles pass the trapping area, (b) a single particle moves toward the trapping area, (c) liquid approaches the edge of channel electrode, (d) particle is trapped and immobilized, (e) liquid is actuated and cut, and (f) droplet containing a single particle is created……………………………………………………………...24 Fig. 3.6 schematic of the cross-sectional view of the device………………………...27 Fig. 3.7 Bottom substrate process……………………………………………………28 Fig. 3.8 Top substrate process………………………………………………………..28 Fig. 3.9 Schematic of the experimental setup………………………………………..30 Fig. 4.1 Comparison between the experimental and theoretical minimum actuation voltages……………………………………………………………………………….33 Fig. 4.2 Differences of the minimum actuation voltage between the theoretical prediction line and experimental data. (a) droplet (10-3 S/m) at 1, 10 and 100 kHz (b) droplet (10-4 S/m) at 1, 10 and 100 kHz……………………………………………...37 Fig. 4.3 Differences of the minimum actuation voltage between the theoretical prediction line and experimental data for the droplet (10-3 and 10-4 S/m) at 100 kHz.38 Fig. 4.4 The interface between the air and the liquid at (a) no applied voltage and (b) the minimum actuation voltage………………………………………………………39 Fig. 4.5 Contact angle and the contact line between the air and water………………45 Fig. 4.6 Sequence of the droplet creation by LDEP at 114 Vrms and 100 kHz. The edge of water is indicated by arrows. (a) 0.5 μl droplet of DI water is placed on reservoir electrode 1. (b) The liquid starts to flow along channel electrode 1 when the actuation signal is applied. (c) The liquid flows towards reservoir electrode 2 when the target electrode and channel electrode 2 are activated. (d) The liquid is cut between channel electrode 1 and the target electrode. (e) A droplet is created on the target electrode……………………………………………………………………………...49 Fig. 4.7 A droplet containing four polystyrene beads with diameters of 15 μm is created on the target electrode……………………………………………………….50 Fig. 4.8 Snapshots of procedure of creating a droplet containing a single particle (a) A single particle moves toward the trapping area, (b) single particle arrives at the trapping area, (c) particle is immobilized, (d) liquid is actuated, and (e) droplet containing a single particle is created………………………………………………..53 Fig. 4.9 Variations of CM factor, modified CM factor, and the ratio with frequency……………………………………………………………………………..56 Fig. 4.10 Simulation results of electric field and direction of the DEP force from cross-sectional view A-A’ in Fig. 3.4 (a) Distribution of electric field and (b) direction of DEP force………………………………………………………………………….58

    REFERENCES
    [1] S.J. Altschuler, L.F. Wu, “Cellular Heterogeneity: Do Differences Make a Difference?” Cell 141: 559-563, (2010).
    [2] J.E. Trosko, R.J. Ruch, “cell-cell communication in carcinogenesis”, Front BioSci. 3: d208-236, (1998).
    [3] S.P. Diggle, A. Gardner, S.A. West, A.S. Griffin, “Evolutionary theory of bacterial quorum sensing: when is a signal not a signal?” Phil. Trans. R. Soc. B 362: 1241–1249, (2007).
    [4] M. Dow, “Diversification of the function of cell-to-cell signaling in regulation of virulence within plant pathogenic xanthomonads”, Sci. Signal. 1 (21): pe23, (2008).
    [5] S.K. Cho, H. Moon, C.J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits”, J. microelectromech. S. 12(1) 70-80, (2003).
    [6] L.-S. Jang, G.-H. Lin, Y.-L. Lin, C.-Y. Hsu, W.-H. Kan, C.-H. Chen, “Simulation and experimentation of a microfluidic device based on electrowetting on dielectric”, Biomed. Microdevices 9 777-786, (2007).
    [7] T. B. Jones, M. Gunji, M. Washizu, M. J. Feldman, “Dielectrophoretic liquid actuation and nanodroplet formation”, J. Appl. Phys 89 (2) 1441-1448, (2001).
    [8] L.-S. Jang, W.-H. Kan, “Peristaltic piezoelectric micropump system for biomedical applications”, Biomed. Microdevices 9 619–626, (2007).
    [9] A. Jahn, J. E. Reiner, W. N. Vreeland, D. L. DeVoe, L. E. Locascio, M. Gaitan, “Preparation of nanoparticles by continuous-flow microfluidic”, J. Nanopart. Res. 10 925–934, (2008).
    [10] M.W.J. Prins, W.J.J. Welters, J.W. Weekamp, “Fluid control in multichannel structures by electrocapillary pressure”, Science 291 277–280, (2001).
    [11] D. C Duffy, O. J A Schueller, S. T Brittain, G. M Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow”, J. Micromech. Microeng. 9 211–217, (1999).
    [12] S.E. McBride, R.M. Moroney, W. Chiang, “Electrohydrodynamic pumps for high-density microfluidic arrays”, Micro Total Analysis Systems 45-48, (1998).
    [13] J.A.M. Sondag-Huethorst, L.G.J. Fokkink, “Electrical double-layers on thiol-modified polycrystalline gold electrodes”, J. Electroanal. Chem. 367 49–57, (1994).
    [14] M.G. Pollack, R.B. Fair, A.D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications”, Appl. Phys. Lett. 77 1725–1726, (2000).
    [15] T.B. Jones, M. Gunji, M. Washizu, M.J. Feldman, “Dielectrophoretic liquid actuation and nanodroplet formation”, J. Appl. Phys. 89(2) 1441–1448, (2001).
    [16] S.-K. Fan, P.-W. Huang, T.-T. Wang, Y.-H. Peng, “Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting”, Lab Chip 8 1325–1331, (2008).
    [17] S. Agastin, M.R. King, T.B. Jones, “Rapid enrichment of biomolecules using simultaneous liquid and particulate dielectrophoresis”, Lab Chip 9 2319–2325, (2009).
    [18] H. Zhang, K.K. Liu, “Optical tweezers for single cells”, J. R. Soc. Interface 5: 671-690, (2008).
    [19] L.-S. Jang, P.-H. Huang, K.-C. Lan, “Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes”, Biosenso. Bio. 24: 3637–3644, (2009).
    [20] G.J. Shah, J.L Veale., Y. Korin, E.F. Reed, H.A. Gritsch, C.J. Kim, “Specific binding and magnetic concentration of CD8+ T-lymphocytes on electrowetting-on-dielectric platform”, Biomicrofluidics 4(4): 044106, (2010).
    [21] H. A. Pohl, “The motion and precipitation of suspensoids in divergent electric fields”, J. Appl. Phys. 22 (7) 869–871, (1951).
    [22] S.K. Cho, Y. Zhao, C.J. Kim, “Concentration and binary separation of micro particles for droplet-based digital microfluidics”, Lab Chip 7: 490–498, (2007).
    [23] H.H. Woodson, J.R. Melcher, Electromechanical Dynamics, John Wiley & Sons Inc, New York, (1968).
    [24] http://www.microchem.com/products/pdf/SU-8-table-of-properties.pdf
    [25] http://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity
    [26] C. Decamps, J.D. Coninck, “Dynamics of spontaneous spreading under electrowetting conditions”, Langmuir 16 10150–10153, (2000).
    [27] H. Ren, R.B. Fair, M.G. Pollack, E.J. Shaughnessy, “Dynamics of electro-wetting droplet transport”, Sens. Actuators B 87 201–206, (2002).
    [28] T. T Kanagasabapathi, K. V I S Kaler, “Surface microfluidics—high-speed DEP liquid actuation on planar substrates and critical factors in reliable actuation”, J. Micromech. Microeng. 17 743–752, (2007).
    [29] M. Kosmulski, K. Marczewska-Boczkowska, P. Zukowski, J. Subocz, C. Saneluta, “Permittivities of 1-Alkyl-3-methylimidazolium Tetrafluoroborates and Hexafluorophosphates”, Croat. Chem. Acta 80(3-4) 461-466, (2007).
    [30] J.S. Hong, S.H. Ko, K.H. Kang, I.S. Kang, “A numerical investigation on AC electrowetting of a droplet”, Microfluid. Nanofluid. 5 263–271, (2008).
    [31] W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions, Cambridge University Press, (1989).
    [32] J. Israelachvili, Intermolecular and Surface Forces, Academic Press Inc., (1985).
    [33] J. Melai, C. Salm, S. Smits, J. Visschers, J. Schmitz, “The electrical conduction and dielectric strength of SU-8”, J. Micromech. Microeng. 19 065012, (2009).
    [34] H. Morgan, N.G. Green, AC Electrokinetics: colloids and nanoparticles, Research Studies Press Ltd., Baldock, (2003).
    [35] A. Ramos, H. Morgan, N.G. Green, A Castellanos, “AC electrokinetics: a review of forces in microelectrode structures”. J. Phys. D: Appl. Phys. 31: 2338-2353, (1998).

    下載圖示 校內:2014-08-19公開
    校外:2014-08-19公開
    QR CODE