| 研究生: |
趙偉翔 Chao, Wei-Hsiang |
|---|---|
| 論文名稱: |
(Ba,Ca)(Ti,Sn,Hf)O3摻雜MnO2無鉛壓電陶瓷與應用於壓電超音波馬達之研究 The Study of MnO2-Doped (Ba,Ca)(Ti,Sn,Hf)O3 Lead-Free Ceramics and Their Applications on the Piezoelectric Ultrasonic Motors |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 無鉛壓電陶瓷 、助燒劑 、氧空缺 、超音波馬達 、胰島素針筒 |
| 外文關鍵詞: | lead-free piezoelectric ceramics, sintering aid, ultrasonic motor, insulin syringes |
| 相關次數: | 點閱:128 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要在開發無鉛壓電陶瓷(Ba,Ca)(Ti,Sn)O3 (BCTS),首先先進行(Ba1-xCax)(Ti1-ySny)O3 (x = 0.02-0.04, y = 0.04-0.06)最佳化邊界的尋找,結果發現,(Ba0.97Ca0.03)(Ti0.96Sn0.04)O3會比BCTS的文獻有著非常高的TC = 97 oC和優異的壓電特性d33 = 415 pC/N與共振阻抗值Z = 17Ω。緊接著針對材料的改制分為兩階段,第一階段為B-site化合物置換改制(Ba0.97Ca0.03)(Ti0.96Sn0.04-zHfz)O3 (BCTS0.04-zHz),結果發現當z = 0.035會有相對較高的Tc = 112 oC和不錯的壓電特性分別為kp = 49 %、kt = 45.7%、Qm = 122.4與d33 = 313 pC/N,更重要的是有相對穩定的變溫共振頻率變化率。第二階段為添加助燒劑改制(Ba0.97Ca0.03)(Ti0.96Sn0.005Hf0.035)O3 + a mole% MnO2 (BCTSH–a Mn),結果發現當a = 2會有不低的TC = 113 oC,與不差的壓電特性分別為kp = 36.4%、kt = 36.0%與d33 = 230 pC/N,更重要的是有效的細化晶粒約22.59 μm與明顯提升氧空缺(Ea = 1.4460 eV)和Qm = 340.8。
在一系列的研究中找出最佳特性之陶瓷體後,將具有高d33與Qm的BCTSH+2Mn陶瓷應用於製作超音波馬達並探討壓電參數對馬達輸出性能的影響,其無鉛壓電馬達相關輸出性能:左推速=3.21 mm/s,、右推速=3.39 mm/s、上推速=2.56 mm/s與推力>2 N。最後成功地去推動已商業化醫療規格0.5 ml的胰島素針筒。
In this study, the development of lead-free (Ba,Ca)(Ti,Sn)O3 (BCTS) piezoelectric ceramics are carried out by conventional solid state reaction method. Firstly, we search the optimum boundary for (Ba1-xCax)(Ti1-ySny)O3 (x = 0.02-0.04, y = 0.04-0.06), we obtain (Ba0.97Ca0.03)(Ti0.96Sn0.04) has the greater TC = 97 oC, superior d33 = 415 pC/N and then using double-stages to modify our material. First stage, substituting Hf for Sn in the (Ba0.97Ca0.03)(Ti0.96Sn0.04-zHfz)O3 (BCTS0.04-zHz), revealing relatively higher TC = 113 oC and excellent piezoelectric properties kp = 49 %、kt = 45.7 %, Qm = 122.4 and d33 = 313 pC/N with z = 0.035, the most important thing is to improve the change rate of resonant frequency with increasing temperature. Second stage, dopig sintering aid a mole% MnO2 in the (Ba0.97Ca0.03)(Ti0.96Sn0.005Hf0.035)O3 (BCTSH–a Mn), revealing TC = 113 oC and kp = 36.4 %, kt = 36.0% and d33 = 230 pC/N with a = 2, the most noticeable thing is to refine grain size 22.59 μm efficiently and increase Qm = 340.8 obviously.
Based on the material properties of ceramics above, the lead-free ceramics BCTSH+2Mn piezoelectric ceramics with high d33 and Qm values are choosen for fabrication of ultrasonic motor and investigate mechanism between d33, Qm and motor’s output characteristics, the output characteristics of lead-free piezoelectric motor : left-pull velocity = 3.21 mm/s、right-pull velocity = 3.39 mm/s、up-pull velocity = 2.56 mm/s and force > 2N. Eventually, our lead-free piezoelectric motor can pull 0.5 ml commercial insulin syringes successfully.
[1] https://zh.wikipedia.org/zh-tw/危害性物質限制指令
[2] http://ejournal.stpi.narl.org.tw/NSC_INDEX/Journal/EJ0001/9207/9207-08.pdf.
[3] http://www.psu.edu/ur/heartdevices/tinymotor.htm.
[4] K. Spanner and B. Koc, "An overview of piezoelectric motors," 12th Internal Conference on New Actuators, pp. 167-176, 2010.
[5] D. A. Henderson, Q. Xu, and D. Piazza, "Continuous auto focus for next generation phone cameras," 12th Internal Conference on New Actuators, pp. 202-205, 2010.
[6] 吳朗, "電子陶瓷-壓電," 全欣科技圖書, vol. 7, 1994.
[7] S. Roberts, "Dielectric and piezoelectric properties of barium titanate," Physical Review, vol. 71, p. 890, 1947.
[8] B. Jaffe, et al., "Properties of piezoelectric eramics in solid solution series PbTiO3-PbZrO3-PbO-SnO and PbTiO3-PbHfO3," J. Res. Nat. Bur. Stds., vol. 55, p. 239, 1955.
[9] 王永齡, "功能陶瓷性能與應用," 科學出版社,pp. 1-79,2003.
[10] G. A. Smolenskii, V. A. Isupv, A. I. Agranovskaya, and N. N. Krainik, "The ferroelectric properties of strontium-bismuth titanate," Sov. Phys., vol. 2, p. 2584, 1961.
[11] 鄒乙弘, "高機電耦合係數之鋰摻雜鈮酸鈉鉀壓電陶瓷開發及其在單一元件超音波換能器之應用," 國立成功大學電機工程學系研究所碩士論文, 2012.
[12] 陳宗佑, "Pb(Mg1/3Nb2/3)O3-PbTiO3-PbZrO3 系壓電陶瓷之製作及其應用," 國立成功大學電機工程學系研究所碩士論文, 2009.
[13] 陳泓儒, "燒結溫度與極化條件於無鉛壓電陶瓷(Na, K)(Nb, Sb)O3–LiTaO3 (NKLNTS)的影響與應用," 國立台南大學電材料科學系碩士論文, 2015.
[14] B. Jaffe, "Piezoelectric ceramics," Academic Press London, vol. 115, 1971.
[15] "IEEE Standard on Piezoelectricity," IEEE Engineering 1988.
[16] Charles Kittel, "Introduction to Solid State Physics, Eighth Edition," John Wiley & Sons, Inc, 2005..
[17] Pieter Kuiper, "Dielectric responses," en.wikipedia, 2010.
[18] 吳朗, '電子陶瓷-介電,' 全欣科技圖書, vol. 1, 1994.
[19] W. Li, Z. Xu, R. Chu, H. Zeng, and K. Zhao, "Enlarged polymorphic phase transition boundary and enhanced piezoelectricity in ternary component 0.8Ba1−xCaxTiO3–0.1BaTi0.8Zr0.2O3–0.1BaTi0.9Sn0.1O3 ceramics," Materials Letters, vol. 110, pp. 80-82, 2013.
[20] A. K. Kalyani, K. Brajesh, A. Senyshyn, and R. Ranjan, "Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO3," Applied Physics Letters, vol. 104, p. 252906, 2014.
[21] D. Xue, Y. Zhou, H. Bao, J. Gao, C. Zhou, and X. Ren, "Large piezoelectric effect in Pb-free Ba(Ti,Sn)O-x(Ba,Ca)TiO3 ceramics," Applied physics letters, vol. 99, p. 122901, 2011.
[22] W. Li, Z. Xu, R. Chu, P. Fu, and G. Zang, "Large Piezoelectric Coefficient in (Ba1-xCax)(Ti0.96Sn0.04)O3 Lead-Free Ceramics," Journal of the American Ceramic Society, vol. 94, pp. 4131-4133, 2011.
[23] M. Chen, Z. Xu, R. Chu, H. Qiu, M. Li, Y. Liu, et al., "Enhanced piezoelectricity in broad composition range and the temperature dependence research of (Ba1-xCax)(Ti0.95Sn0.05)O3 piezoceramics," Physica B: Condensed Matter, vol. 433, pp. 43-47, 2014.
[24] W. Li, Z. Xu, R. Chu, P. Fu, and G. Zang, "Enhanced ferroelectric properties in (Ba1−xCax)(Ti0.94Sn0.06)O3 lead-free ceramics," Journal of the European Ceramic Society, vol. 32, pp. 517-520, 2012.
[25] L.-F. Zhu, B. P. Zhang, X.-K. Zhao, L. Zhao, P.-F. Zhou, and J.-F. Li, "Enhanced Piezoelectric Properties of (Ba1-xCax)(Ti0.92Sn0.08)O3 Lead-Free Ceramics," Journal of the American Ceramic Society, vol. 96, pp. 241-245, 2013.
[26] L.-F. Zhu, B.-P. Zhang, X.-K. Zhao, L. Zhao, F.-Z. Yao, X. Han, et al., "Phase transition and high piezoelectricity in (Ba,Ca)(Ti1-xSnx)O3 lead-free ceramics," Applied physics letters, vol. 103, pp. 072905, 2013.
[27] M. Chen, Z. Xu, R. Chu, Y. Liu, L. Shao, W. Li, et al., "Polymorphic phase transition and enhanced piezoelectric properties in (Ba0.9Ca0.1)(Ti1−xSnx)O3 lead-free ceramics," Materials Letters, vol. 97, pp. 86-89, 2013.
[28] D. Lin, K.W. Kwok, and H.L.W. Chan, "Structure, dielectric and piezoelectric properties of Ba0.90Ca0.10Ti1−xSnxO3 lead-free ceramics," Ceramics International, vol. 40, pp. 6841-6846, 2014.
[29] L.-F. Zhu, B.-P. Zhang, L. Zhao, and J.-F. Li, "High piezoelectricity of BaTiO3–CaTiO3–BaSnO3 lead-free ceramics," Journal of Materials Chemistry C, vol. 2, pp. 4764-4771, 2014.
[30] L.-F. Zhu, B.-P. Zhang, L. Zhao, S. Li, Y. Zhou, X.-C. Shi, and N. Wang, "Large piezoelectric effect of (Ba,Ca)TiO3–xBa(Sn,Ti)O3 lead-free ceramics," Journal of the European Ceramic Society, vol. 36, pp. 1017-1024, 2016.
[31] T. Chen, T. Zhang, J. Zhou, J. Zhang, Y. Liu, and G. Wang, "Ferroelectric and piezoelectric properties of [(Ba1-3x/2Bix)0.85Ca0.15](Ti0.90Zr0.10)O3 lead-free piezoelectric ceramics," Materials Research Bulletin, vol. 47, pp. 1104-1106, 2012.
[32] X. Wang, X. Chao, P. Liang, L. Wei, and Z. Yang, "Polymorphic phase transition and enhanced electrical properties of (Ba0.91Ca0.09-xSrx)(Ti0.92Sn0.08)O3 lead-free ceramics," Ceramics International, vol. 40, pp. 9389-9394, 2014.
[33] H. Wang and J. Wu, "Ba0.95Ca0.05Ti0.92Sn0.08-xZrxO3 lead-free ceramics: microstructure and piezoelectricity," Journal of Materials Science: Materials in Electronics, vol. 26, pp. 4119-4123, 2015.
[34] Q. Chen, T. Wang, J. Wu, X. Cheng, X. Wang, B. Zhang, et al., "Low temperature sintering of Ba0.91Ca0.09Ti0.916Sn0.084O3 lead-free piezoelectric ceramics with the additives of ZnO and MnO2," Journal of Electroceramics, vol. 32, pp. 175-179, 2014.
[35] J. Wu, T. Wang, X. Cheng, X. Wang, B. Zhang, J. Zhu, et al., "Enhanced d33 value in HfO2-modified (Ba0.98Ca0.02)(Ti0.94Sn0.06)O3 ceramics," Journal of Electroceramics, vol. 576, pp. 299-301, 2013.
[36] B. Wu, D. Xiao, J. Wu, T. Huang, Z. Wang, C. Liu, et al., "Microstructures and Piezoelectric properties of CuO-doped (Ba0.98Ca0.02)(Ti0.94Sn0.06)O3 ceramics," Journal of Electroceramics, vol. 33, pp. 117-120, 2014.
[37] P.-F. Zhou, B.-P. Zhang, L. Zhao, X.-K. Zhao, L.-F. Zhu, L.-Q. Cheng, et al., "High piezoelectricity due to multiphase coexistence in low-temperature sintered (Ba,Ca)(Ti,Sn)O3–CuOx ceramics," Applied physics letters, vol. 103, p. 172904, 2013.
[38] L. Zhao, B.-P. Zhang, P.-F. Zhou, L.-F. Zhu, and J.-F. Li, "Effect of Li2O addition on sintering and piezoelectric properties of (Ba,Ca)(Ti,Sn)O3 lead-free piezoceramics," Journal of the European Ceramic Society, vol. 35, pp. 533-540, 2015.
[39] L. Zhao, B.-P. Zhang, P.-F. Zhou, X.-K. Zhao, and L.-F. Zhu, "Phase Structure and Property Evaluation of (Ba,Ca)(Ti,Sn)O3 Sintered with Li2CO3 Addition at Low Temperature," Journal of the American Ceramic Society, vol. 97, pp. 2164-2169, 2014.
[40] P.-F. Zhou, B.-P. Zhang, L. Zhao, and L.-F. Zhu, "Effect of LiF addition on phase structure and piezoelectric properties of (Ba,Ca)(Ti,Sn)O3 ceramics sintered at low temperature," Ceramics International, vol. 41, pp. 4035-4041, 2015.
[41] J. Zhou and K. Chen, "Low Temperature Sintering of (Ba0.98Ca0.02) (Sn0.04Ti0.96)O3 Ceramics Using CuO-B2O3 as a Sintering Additive," Key Engineering Materials, vol. 602-603, p. 813, 2014.
[42] B. Wu, D. Xiao, J. Wu, Q. Gou, and J. Zhu, "Microstructure and electrical properties of (Ba0.98Ca0.02)(Ti0.94Sn0.06)O3–x wt% ZnO lead-free piezoelectric ceramics sintered at lower temperature," Journal of Materials Science: Materials in Electronics, vol. 26, pp. 2323-2328, 2015.
[43] K. Uchino, "Piezoelectric ultrasonic motors: overview," Smart Materials and Structures, vol. 7, pp. 273-285, 1998.
[44] K. Uchino, "超音波モータ," 精密工学会誌, vol. 55, pp. 485-490, 1989.
[45] 蕭仕偉, "新型壓電振動子之研發及其超音波馬達設計應用," 國立成功大學機械工程學系研究所博士論文, 2011.
[46] A. Williams and W. Brown, “Piezoelectric motor,” US-patent: 2439499, 1942.
[47] H. V. Barth, "Ultrasonic driven motor," IBM Technological Disclosure Bulletin 16, No. 7, p. 2263, 1973.
[48] J. Friend, A. Umeshima, T. Ishii, K. Nakamura, and S. Ueha, "A piezoelectric linear actuator formed from a multitude of bimorphs," Sensors and Actuators, vol. 109, pp. 242-251, 2004.
[49] C.-H. Yun, T. Ishii, K. Nakamura, S. Ueha, and K. Akashi, "A high power ultrasonic linear motor using a longitudinal and bending hybrid bolt-clamped langevin type transducer," Japanese Journal of Applied Physics, vol. 40, pp. 3773-3776, 2001.
[50] 蕭仕偉, "線型行波超音波馬達定子之設計與分析," 國立成功大學機械工程學系研究所碩士論文, 2004.
[51] 鄭欽隆, "嶄新壓電行進波驅動式輸送工作平台之研發," 國立勤益科技大學機械工程學系研究所碩士論文, 2010.
[52] J. Zhang, H. Zhu, and C. Zhao, "Contact analysis and modeling of a linear ultrasonic motor with a threaded output shaft," Journal of Electroceramics, vol.29, pp. 254-261, 2012.
[53] D. A. Henderson, "Simple Ceramic Motor . . . Inspiring Smaller Products," 10th International Conference on New Actuators, vol. 50, pp. 1-4, 2006.
[54] W. G. Ali and G. Nagib, "Embedded Control Design for Insulin Pump," Advanced Materials Research, vols.201-203, pp. 2399-2404, 2011.
[55] D. Henderson, "Novel piezo motor enables positive displacement microfluidic pump," Technical Proceedings of the 2007 NSTI Nanotechnology Conference and Trade Show, vol. 3, pp. 272-275, 2007.
[56] A. J. Moulson and J. M. Herbert, "Electroceramics: materials, properties, applications," John Wiley & Sons, Inc, 2003.
[57] 曲遠方, "功能陶瓷材料," 曉園出版社, pp. 156-157, 2006.
[58] D. A. Henderson, "Piezo Ceramic Motors Improve Phone Camera Auto Focus and Zoom," New Scale Technologies, US, 2005.
[59] J.-T. Zhang, W.-Q. Huang, H. Zhu, C.-S. Zhao, "Lead Screw Linear Ultrasonic Motor Using Bending Vibration Modes," Transactions of Nanjing University of Aeronautics & Astronautics, vol. 26, pp. 89-94, 2009.
[60] J. Hao, W. Bai, W. Li, and J. Zhai, "Correlation Between the Microstructure and Electrical Properties in High-Performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Lead-Free Piezoelectric Ceramics," Journal of the American Ceramic Society, vol. 95, pp. 1988-2006, 2012.
[61] C. Zhao, Y. Feng, H. Wu, and J. Wu, "Phase boundary design and high piezoelectric activity in (1−x)(Ba0.93Ca0.07)TiO3-xBa(Sn1−yHfy)O3 lead-free ceramics," Journal of Alloys and Compounds, vol. 666, pp. 372-379, 2016.
[62] M. Chen, Z. Xu, R. Chu, Q. Chen, Y. Liu, and L. Shan, "Microstructure and Electrical Properties of the (Ba1-xCax)(Ti0.96Zr0.02Sn0.02)O3 Ceramics," Advanced Materials Research, vol. 622-623, pp. 283-286, 2013.
[63] X.-P. Jiang, L. Li, C. Chen, X.-J. Wang, and X.-H. Li, "Effects of Mn-doping on the properties of (Ba0.92Ca0.08)(Ti0.95Zr0.05)O3 lead-free ceramics," Journal of Alloys and Compounds, vol. 574, pp. 88-91, 2013.
[64] J. Wu, Z. Wang, B. Zhang, J. Zhu, and D. Xiao, "Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-free Ceramics with a Sintering Aid of MnO," Integrated Ferroelectrics: An International Journal, vol. 141, pp. 89-98, 2013.
[65] M. Jiang, Q. Lin, D. Lin, Q. Zheng, X. Fan, X. Wu, et al., "Effects of MnO2 and sintering temperature on microstructure, ferroelectric, and piezoelectric properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics," Journal of Materials Science, vol. 48, pp. 1035-1041, 2013.
[66] Z. Shen, X. Wang, H. Gong, L. Wu, and L. Li, "Effect of MnO2 on the electrical and dielectric properties of Y-doped Ba0.95Ca0.05Ti0.85Zr0.15O3 ceramics in reducing atmosphere," Ceramics International, vol. 40, pp. 13833-13839, 2014.
[67] X. Wang, P. Liang, X. Chao, and Z. Yang, "Dielectric Properties and Impedance Spectroscopy of MnCO3-Modified (Ba0.95Ca0.05)(Ti0.85Zr0.15)O3 Lead-Free Ceramics," Journal of the American Ceramic Society, vol. 98, pp. 1506-1514, 2015.
[68] C.-C. Tsai, S.-Y. Chu, C.-S. Hong, and S.-L. Yang, "Influence of A-site deficiency on oxygen-vacancy-related dielectric relaxation, electrical and temperature stability properties of CuO-doped NKN-based piezoelectric ceramics," Ceramics International, vol. 39, pp. 165-170, 2013.
[69] S. Jiansirisomboon and A. Watcharapasorn, "Effects of alumina nano-particulates addition on mechanical and electrical properties of barium titanate ceramics," Current Applied Physics, vol. 8, pp. 48-52, 2008.
[70] M. Zheng, Y. Hou, M. Zhu, M. Zhang, and H. Yan, "Shift of morphotropic phase boundary in high-performance fine-grained PZN–PZT ceramics," Journal of the European Ceramic Society, vol. 34, pp. 2275-2283, 2014.
[71] Z. Yu, K. C. Chan, J. Guo, J. Y. Dai, B. Wang, X. P. Jiang, et al., "Lead free BNT ceramics as driving element in traveling wave type ultrasonic motor," International Conference on Smart Materials and Nanotechnology in Engineering, vol. 6423, p. 642325, 2007.
[72] J. Jin, D. Wan, Y. Yang, Q. Li, and M. Zha, "A linear ultrasonic motor using (K0.5Na0.5)NbO3 based lead-free piezoelectric ceramics," Sensors and Actuators A: Physical, vol. 165, pp. 410-414, 2011.
[73] E. Li, H. Kakemoto, T. Hoshina, and T. Tsurumi, "A Shear-Mode Ultrasonic Motor Using Potassium Sodium Niobate-Based Ceramics with High Mechanical Quality Factor," Japanese Journal of Applied Physics, vol. 47, pp. 7702-7706, 2008.
[74] E. Li, R. Sasaki, T. Hoshina, H. Takeda, and T. Tsurumi, "Miniature Ultrasonic Motor Using Shear Mode of Potassium Sodium Niobate-Based Lead-Free Piezoelectric Ceramics," Japanese Journal of Applied Physics, vol. 48, p. 09KD11, 2009.
[75] Y. Doshida, S. Kishimoto, T. Irieda, H. Tamura, Y. Tomikawa and S. Hirose, "Double-Mode Miniature Cantilever-Type Ultrasonic Motor Using Lead-Free Array-Type Multilayer Piezoelectric Ceramics," Japanese Journal of Applied Physics, vol. 47, pp. 4242-4247, 2008.
[76] X. Li, P. Ci, G. Liu, and S. Dong, "A Two-Layer Linear Piezoelectric Micromotor," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 62, pp. 405-411, 2015.
[77] T.-H. Cheng, X.-D. Guo, G. Bao, H. Gao, and C.-F. Xiao, "Analysis and development of plate-attached cylindrical rotary-linear ultrasonic motor," Piezoelectricity, Acoustic Waves and Device Applications, vols. 23-25, pp. 270-273, 2012.