| 研究生: |
何松穎 Ho, Sung-Ying |
|---|---|
| 論文名稱: |
考慮需求面管理與太陽光電輸出平滑化之混合儲能系統最佳化排程 Optimal Scheduling of Hybrid Energy Storage Systems for Demand-side Management and PV Generation Smoothing |
| 指導教授: |
楊宏澤
Yang, Hong-Tzer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 儲能系統 、再生能源 、平滑化 、最佳化充放電排程 |
| 外文關鍵詞: | energy storage system (ESS), renewable energy (RE), power smoothing, optimal charging and discharging scheduling |
| 相關次數: | 點閱:154 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著儲能系統之成本快速下降,近年來用於調節電網之相關技術與實證應用與日漸增。依據電能調節的週期特性,目前最常見的儲能系統應用可被分為負載管理及再生能源輸出平滑化。然而,此兩類型之應用常無法相互結合,導致儲能系統容量之利用效用受到限制。鑒於此,本文提出一套儲能系統之最佳化排程方法,可使儲能系統同時達到再生能源發電功率平滑化及配合電價費率最小化操作成本。此外,配合智慧電網架構中之需求面管理功能,所提方法亦可於特定時段達成負載削減尖峰,以配合電網需量反應之需求。
為驗證提出之方法,本文採用內政部沙崙建築研究所之電能管理系統所實際量測之太陽能發電歷史資料與儲能系統規格為模擬案例。傳統應用動態追蹤之再生能源平滑化方法亦在文中與所提方法比較。針對全釩溢流電池與鋰電池之效率與劣化特性差異,本文中亦分析其兩者在所提最佳化方法操作下之各自動作表現。模擬結果顯示所提方法不僅可平滑再生能源責任分界點之輸出功率,更可配合電能管理策略獲得額外利益。
With the decreasing cost of energy storage system (ESS), related technologies and verification of its applications on power grid dispatching have rapidly risen in recent years. Based on the periodic characteristics of electricity power regulation, the most commonly-seen applications can be divided into load management and renewable energy (RE) output smoothing. However, these two purposes cannot be achieved at the same time and thus leads to the limitation on effectiveness of ESS. Therefore, this thesis proposes an optimization method for ESS scheduling to reach the goal of power smoothing and cost minimization based on TOU tariff. On the other hand, the proposed method is also capable of shedding the peak load for requirements of demand response (DR) events.
To verify the proposed method, this thesis employs realistic data for photovoltaic (PV) and ESS systems in Shalun Architecture and Building Research Institute (SABRI). Additionally, the traditional power smoothing method using dynamic rate limiter is discussed and compared with the proposed method in this thesis. Furthermore, aiming at the differences in efficiency and degradation characteristics of vanadium redox battery (VRB) and lithium-ion battery (LB), this thesis also analyzes their performance, respectively, in optimized operations. Results show that the proposed method not only can smoothen the power output at the point of common coupling (PCC), but also earn extra profits via energy management strategies.
[1] 經濟部能源局, 新能源政策, online available: http://www.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=48. [Accessed 29 May 2019].
[2] Y. Wang, V. Silva, and M. Lopez-Botet-Zulueta, “Impact of High Penetration of Variable Renewable Generation on Frequency Dynamics in The Continental Europe Interconnected System,” IET Renewable Power Generation, vol. 10, no. 1, pp. 10-16, Jan. 2016.
[3] M. A. Akbari et al., “New Metrics for Evaluating Technical Benefits and Risks of DGs Increasing Penetration,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2890-2902, Nov. 2017.
[4] F. Marra, G. Yang, C. Træholt, J. Østergaard, and E. Larsen, “A Decentralized Storage Strategy for Residential Feeders With Photovoltaics,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 974-981, Mar. 2014.
[5] G. Mokhtari, G. Nourbakhsh, F. Zare, and A. Ghosh, “Overvoltage Prevention in LV Smart Grid Using Customer Resources Coordination,” Energy and Buildings, vol. 61, pp. 387–395, Jun. 2013.
[6] J. Kim, E. Muljadi, J. W. Park, and Y. C. Kang, “Adaptive Hierarchical Voltage Control of a DFIG-Based Wind Power Plant for a Grid Fault,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2980-2990, Nov. 2016.
[7] Y. Han, P. M. Young, A. Jain, and D. Zimmerle, “Robust Control for Microgrid Frequency Deviation Reduction With Attached Storage System,” IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 557-565, Mar. 2015.
[8] S. Chen, T. Zhang, H. B. Gooi, R. D. Masiello, and W. Katzenstein, “Penetration Rate and Effectiveness Studies of Aggregated BESS for Frequency Regulation,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 167-177, Jan. 2016.
[9] Q. Li and M. Zhou, “The Future-Oriented Grid-Smart Grid,” Journal of Computers, vol. 6, no. 1, pp. 98-105, 2011.
[10] P. Agrawal, “Overview of DOE Microgrid Activities”, Proc. Symp. Microgrid, 2006.
[11] M. Masera, E. F. Bompard, F. Profumo, and N. Hadjsaid, “Smart (Electricity) Grids for Smart Cities: Assessing Roles and Societal Impacts,” Proceedings of the IEEE, vol. 106, no. 4, pp. 613-625, Apr. 2018.
[12] K. Chaudhari and A. Ukil, “TOU Pricing basd Energy Management Of Public EV Charging Stations Using Energy Storage System,” IEEE International Conference on Industrial Technology, 2016.
[13] M. R. Sarker, Y. Dvokin, and M. A. Ortega-Vazquez, “Optimal Participation of an Electric Vehicle Aggregator in Day-Ahead Energy and Reserve Markets,” IEEE Transactions on Power System, Vol. 31, No. 5, pp. 3506-3515, Sep. 2016.
[14] H. Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Agtaie, “A Practical Scheme to Involve Degradation Cost of Lithium –Ion Batteries in Vehicle-to-Grid Applications,” IEEE Transactions on Sustainable Energy, Vol. 7, No. 4, pp. 1730-1738, Oct. 2016.
[15] M. J. E. Alarn, and T. K. Saha, “Cycle-Life Degradation Assessment of Baatery Energy Sotrage Systems Caused by Solar PV Variability,” IEEE Power and Energy Society General Meeting, 2016.
[16] 蔣東方, 雨流計數的遞歸算法, 航空學報, Vol. 30, No. 1, Jan. 2009.
[17] M. Chawla, R. Naik, R. Burra, and H. Wiegman, “Utility Energy Storage Life Degradation Estimation Method,” IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply, 2010.
[18] X. Li, and D. Hui, “Battery Energy Storage Station (BESS)-Based Smoothing Control of Photovoltaic (PV) and Wind Power Generation Fluctuations,” IEEE Transactions on Sustainable Energy, Vol. 4, No. 2, pp. 464-473, Apr. 2013.
[19] M. Lei, Z. Yang, Y. Wang, H. Xu, L. Meng, J. C. Vasquez, and J. M. Guerrero, “An MPC-Based ESS Control Method for PV Power Smoothing Applications,” IEEE Transactions on Power Electronics, Vol. 33, No. 3, pp. 2136-2144, Mar. 2018.
[20] H. T. Yang, C. M. Huang, Y. C. Huang, Y. S. Pai, “A Weather-Based Hybrid Method for 1-Day Ahead Hourly Forecasting of PV Power Output,” IEEE Transactions on Sustainable Energy, Vol. 5, No. 3, pp. 917-926, Jul. 2014.
[21] 行政院經濟能源農業處, 太陽光電2年推動計畫, online available: https://www.ey.gov.tw/Page/448DE008087A1971/833cd14f-6993-41e8-bff9-6d917f39c605#. [Accessed Jun. 2019].
[22] B. Y. Liaw, E. P. Roth, R. G. Jungst, G. Nagasubramanian, H. L. Case, and D. H. Doughty, “Correlation of Arrhenius behaviors in power and capacity fades with cell impedence and heat generation in cylindrical lithium-ion cells,” J. Power Sources, vol.119, pp. 874-886, 2003.
[23] P. Rong and M. Pedram, “An analytical model for predicting the remaining battery capacity of lithium-ion batteries,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 14, no.5, pp. 441-451, May 2006.
[24] S. Han, S. Han, and H. Aki, “A pratical battery wear model for electrical vehicle charging applications,” Applied Energy, vol. 113, pp. 1100-1108, 2014.
[25] 台灣電力公司, 台灣電力公司電價表, March 2018. [Online]. Available: https://www.taipower.com.tw/upload/238/2018070210412196443.pdf [Accessed Jun. 2019].
[26] Y. Ning, X. Li, X. Ma, X. Jia, and D. Hui, “Optimal Schedule Strategy of Battery Energy Storage Systems for Peak Load Shifting Based on Interior Point Method,” 12th World Cogress on Intelligent Control and Automation, 2016.
[27] R. W. Yan, and H. M. Xiao, “Energy Storage System Optimization Strategy in the Distribution Network Based on Active Set Method,” IEEE International Conference on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom), 2016.
校內:2020-08-01公開