| 研究生: |
譚宇竹 Tan, Yu-Chu |
|---|---|
| 論文名稱: |
整合遙感探測及3D Web-GIS技術建立三維都市熱環境平台 Integrating Remote Sensing and 3D Web-GIS Technology to Establishing Three-dimensional Urban Thermal Environment |
| 指導教授: |
饒見有
Rau, Jiann-Yeou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 3D Web-GIS 、都市熱環境 、物件導向影像分析 、地表溫度三維模型 |
| 外文關鍵詞: | 3D Web-GIS, Urban thermal environment, OBIA, 3D LST model |
| 相關次數: | 點閱:191 下載:39 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,氣候變化問題導致城市溫度升高,根據研究表明不同的地表覆蓋會對都市熱島效應有不同貢獻量,對於建築物而言太陽光直射屋頂,其屋頂材質吸熱程度直接影響著頂樓住戶的舒適度,進而提高空調需求,而空調亦是造成熱島效應的因子之一,在此惡性循環下將會使都市溫度及能源消耗不斷增加,地表溫度增加也會造成行人尺度熱舒適度降低。但是,如何使居住在城市中的居民容易和簡單地了解何種土地覆蓋會對城市溫度產生影響,是本研究要解決的問題。
對於非專業學者的民眾來說,二維地表溫度圖和科學數據表示不直觀且難以理解。因此,在這種情況下,將城市溫度的3D可視化並整合至3D Web-GIS中是合適的解決方案。首先使用UAV搭載FLIR Duo Pro R熱紅外相機及MicaSense RedEdge-M多光譜相機獲取資料,並使用波段套合方法分別將兩種相機的影像資料轉換為相同像幾何,改善波段錯位現象,即可進行後續空三及建模工作,在這個程序裡我們會產製DSM(Digital Surface Model)、多光譜、熱紅外正射影像、三維地表溫度模型及三維仿真模型。
使用OBIA(Object-Based Image Analysis)技術結合高程資訊及多光譜影像資料進行土地覆蓋分類,將分類好的成果及模型匯入TerraExplorer軟體,軟體中可以將土地覆蓋成果內的土地覆蓋類別及溫度屬性賦予給網格模型,這樣即可查看模型上的材質及溫度,最後使用TerraExplorer提供的應用程序編程接口(API)進行二次開發,建立客製化的3D Web-GIS平台,將帶有屬性的三維地表溫度模型、仿真模型成果發佈至3D Web-GIS,提供使用者操作、分析、瀏覽都市熱環境。
In recent years, climate change has caused urban temperatures to increase. According to research, different surface coverage will contribute differently to the Urban Heat Island(UHI) effect. However, how to make residents living in cities easy to understand what kind of objects, materials and types of buildings will affect the city temperature is the problem to be solved in this research. But for the non-expert, the representation of two-dimensional surface temperature maps and scientific data is not intuitive and difficult to understand. Therefore, in this case, integrating 3D visualization of urban temperature into 3D Web-GIS is the appropriate solution. First use Unmanned Aerial Vehicle(UAV) equipped with FLIR Duo Pro R and RedEdge-M camera to obtain data, and use band co-registration method to transform each bands to the same image geometry respectively, to improve the problem of band mis-registration, then the subsequent aerotriangulation and modeling works can be performed. In this program, we will produce Digital Surface Model(DSM), thermal infrared(TIR) ortho image, multispectral ortho image, 3D Land Surface Temperature(LST) model and photo-realistic 3D Real model. Next, we use Object-Based Image Analysis (OBIA) technology to combine elevation information and multispectral data to perform land cover classification. The classification results and the model produced in the previous step are imported into TerraExplorer. TerraExplorer can classify mesh model by land cover classification data, and give the attribute information into model, so we can identify the material and temperature on the model. In the final, the application programming interface (API) provided by TerraExplorer was used for secondary development to create a customized 3D Web-GIS platform and providing users to operate, analyze, and browse urban thermal environment.
Agapiou, A., Hadjimitsis, D. G., & Alexakis, D. D., 2012. Evaluation of broadband and narrowband vegetation indices for the identification of archaeological crop marks. Remote Sensing, 4(12), 3892-3919.
Baluja, J., Diago, M. P., Balda, P., Zorer, R., Meggio, F., Morales, F., & Tardaguila, J., 2012. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrigation Science, 30(6), 511-522.
Becker, F., & Li, Z.-L., 1990. Temperature-independent spectral indices in thermal infrared bands. Remote sensing of Environment, 32(1), 17-33.
Berni, J. A., Zarco-Tejada, P. J., Suárez, L., & Fereres, E., 2009. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on geoscience and Remote Sensing, 47(3), 722-738.
Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing, 65(1), 2-16.
Fraser, C.S., 1997. Digital Camera Self-Calibration. ISPRS Journal of Photogrammetry and Remote Sensing 52, 149-159.
Gillespie, A. R., 1986. Lithologic mapping of silicate rocks using TIMS.
Hartmann, W., Tilch, S., Eisenbeiss, H., & Schindler, K., 2012. Determination of the UAV position by automatic processing of thermal images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39, B6.
H.Bay, A. Ess, T. Tuytelaars, L. Van Gool., 2008. Speeded-up robust features (SURF). Comput. Vis. Image Underst., 110, 346-359
Jensen, J. R., 2007. Remote sensing of the environmentan earth resource perspective. Pearson Education.
Jhan, J.-P., Rau, J.-Y., & Huang, C.-Y., 2016. Band-to-band registration and ortho-rectification of multilens/multispectral imagery: A case study of MiniMCA-12 acquired by a fixed-wing UAS. ISPRS journal of photogrammetry and remote sensing, 114, 66-77.
Jhan, J.-P., Rau, J.-Y., & Haala, N., 2018. Robust and adaptive band-to-band image transform of UAS miniature multi-lens multispectral camera. ISPRS journal of photogrammetry and remote sensing, 137, 47-60.
Jhan, J.-P., Rau, J.-Y., 2019. A normalized SURF for multispectral image matching and band co-registration. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
Kealy, P. S., 1990. Estimation of emissivity and temperature using alpha coefficients. Paper presented at the Proceedings of the Second Thermal Infrared Multispectral Scanner (TIMS) Workshop.
Liang, S., 2001. An optimization algorithm for separating land surface temperature and emissivity from multispectral thermal infrared imagery. IEEE Transactions on geoscience and Remote Sensing, 39(2), 264-274.
Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R. C., Bielecki, C. R., . . . Louis, L. V., 2017. Global risk of deadly heat. Nature Climate Change, 7(7), 501-506.
Oruc, M., Marangoz, A., & Buyuksalih, G., 2004. Comparison of pixel-based and object-oriented classification approaches using Landsat-7 ETM spectral bands. Int Archiv Photogrammetry Remote Sensing spatial Inf Sci, 35, 1118-1122.
Quattrochi, D. A., & Luvall, J. C., 1999. Thermal infrared remote sensing for analysis of landscape ecological processes: methods and applications. Landscape ecology, 14(6), 577-598.
Rau, J.-Y., & Cheng, C.-K. (2013). A cost-effective strategy for multi-scale photo-realistic building modeling and web-based 3-D GIS applications in real estate. Computers, Environment and Urban Systems, 38, 35-44.
Sabins Jr, F., 1996. Remote Sensing: Principles and Interpretation . New York: W. H: Freeman Publications.
Skelhorn, C., Lindley, S., & Levermore, G., 2014. The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landscape and Urban Planning, 121, 129-140.
Snyder, W. C., Wan, Z., Zhang, Y., & Feng, Y.-Z., 1998. Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19(14), 2753-2774.
Stagakis, S., González-Dugo, V., Cid, P., Guillén-Climent, M. L., & Zarco-Tejada, P. J., 2012. Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices. ISPRS journal of photogrammetry and remote sensing, 71, 47-61.
Tong, X., Xie, H., & Weng, Q., 2013. Urban land cover classification with airborne hyperspectral data: What features to use? IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(10), 3998-4009.
Valor, E., & Caselles, V., 1996. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote sensing of Environment, 57(3), 167-184.
Watson, K., 1992. Spectral ratio method for measuring emissivity. Remote sensing of Environment, 42(2), 113-116.
Weng, Q., Lu, D., & Schubring, J., 2004.Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote sensing of Environment, 89(4), 467-483.
Whiteside, T., & Ahmad, W., 2005. A comparison of object-oriented and pixel-based classification methods for mapping land cover in northern Australia. Paper presented at the Proceedings of SSC2005 Spatial intelligence, innovation and praxis: The national biennial Conference of the Spatial Sciences Institute.
Zhou, K., 2010. Structure & motion, structure in pattern recognition, Vienna University of Technology, faculty of informatics, Institute of Computer Graphics and Algorithms. Pattern Recognition and Image Processing Group.
王冠中, 2012. 都市土地利用型與地表溫度關係之探究── 以台北市為例. 國立台灣大學森林環境暨資源學研究所碩士論文.
白祐瑋, 2017. 無人機窄波段多光譜影像於地物分類之研究. 國立成功大學測量及空間資訊學系研究所碩士論文
石婉瑜, 2018. 臺北盆地的熱環境特徵與都市綠色基盤的影響. 都市與計劃, 45(4), 283-300.
那至中, 2010. 面陣列熱影像特性之研究. 國立政治大學私立中國地政研究所碩士論文
沈俊祺, 2010. 3D Web GIS空間決策支援系統之開發 - 以台灣道路交通噪音預測為例. 國立台灣大學地理環境資源學系研究所碩士論文
林宏昱, 2017. 整合紅外線熱影像與可見光影像之熱影像三維模型重建. 國立中興大學土木工程學系研究所碩士論文.
章國威, 王淑姿, 申雍, 羅正宗, 黃鼎名, 蔡和霖, 2006. 應用抽穗期多光譜航照影像預估水稻產量之研究. 航測及遙測學刊, 11(1), 27-38.
廖家翎, 2015. 熱影像建製數值地表溫度模型之研究. 國立政治大學私立中國地政研究所碩士論文.
鄭雅文, 史天元, 蕭國鑫, 2008. 物件導向分類於高解析度影像自動判釋. Journal of Photogrammetry and Remote Sensing, 13(4), 273-284.
鄭婉純, 2003. 都市土地利用與都市氣溫關係之研究-台中市直轄市之實證研究. 私立逢甲大學土地管理學系研究所碩士論文.
MicaSense (2019, August 17) Use of Calibrated Reflectance Panels For RedEdge Data. Retrieved from https://support.micasense.com/hc/en-us/articles/115000765514-Use-of-Calibrated-Reflectance-Panels-For-RedEdge-Data
MicaSense (2019, August 17) What are the units of the Atlas GeoTIFF output?. Retrieved from https://support.micasense.com/hc/en-us/articles/215460518-What-are-the-units-of-the-Atlas-GeoTIFF-output-
Terraexplorer: API Reference Guide. Retrieved from http://www.skyline.co.il/SkylineGlobe/TerraExplorer/v5.1.2/APIReferenceGuide/index.htm
Skyline: SkylineGlobe v7.0产品技术白皮书. Retrieved from http://help.skylineglobe.cn/upload/SkylineGlobe7/SkylineGlobe%20v7.0.pdf?fbclid=IwAR1VcAYcPFYkWXrayKYyNWQTWW98LxChwuy7hO3I81HQQGQBWR8sDY0SA2Y