| 研究生: |
陳郁仁 Chen, Yu-Jen |
|---|---|
| 論文名稱: |
層狀聲波波傳理論之分析及其在液體感測器上之應用 An Analysis of Acoustic Wave Propagation in Layer Structure and its Application on Liquid Sensors |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 液體感測器 、拉福波 |
| 外文關鍵詞: | liquid sensors, love wave |
| 相關次數: | 點閱:120 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
拉福波是在彈性體上成長一波導層,以水平剪向波的傳遞方式。其傳遞時大部分的能量皆集中在波導層附近,因此其波傳特性不僅和聲波所在介質有關,也受彈性體表面及波導層邊界條件影響。拉福波液體感測器即是利用此原理,藉由分析液體負載對波速、波傳衰減常數等波傳特性造成的變化來求得未知液體的各項特性參數。
本論文針對石英(Quartz)、鈮酸鋰(LiNbO3)及鉭酸鋰(LiTaO3)等常用單晶壓電材料的拉福波波傳特性進行探討,將理論推導以數值分析方法配合電腦程式的撰寫求得各材料在不同波導層、不同傳播方向時聲波之波速、機電耦合常數;進一步並探討液體負載的導電度及黏滯度等參數對表面聲波波傳特性的影響。
最後比對別人的實驗結果,以證明程式的可靠性,建立起簡單的拉福波理論基礎。
Love wave with pure shear-horizontal(SH) waveguide mode, in the presence of a guiding layer, is a wave that propagates with its energy concentrated in the guiding layer. Therefore, the propagation characteristics of the acoustic wave depends not only on the transmission media but the boundary condition of elastic surface and guiding layer. By detecting the variations of phase velocity and propagation attenuation constant, a Love wave sensor can be realized. And further, we can obtain the acousto-electric parameters of the unknown liquid by analyzing the relationship between these parameters and Love wave propagation characteristics.
In this dissertation, the propagation characteristics of Love wave in the piezoelectric single crystal substrates with different guiding layer and various propagation directions such as Quartz, LiNbO3 and LiTaO3 are completely discussed. First of all, wave propagation theory and numerical analysis techniques are applied to obtain the phase velocity, electromechanical coupling factor and attenuation constant. Then, the changes of wave propagation characteristics due to relative conductivity, and viscosity of the liquid loaded on the Love wave sensor are also discussed.
Finally ,we compared our simulation results with the experimental results and successfully established a simple simulation system of Love wave sensor.
[1] R. M. White and R. W. Voltmer, “Direct Piezoelectric Coupling to Surface Elastic Waves,” Applied Physics Letters, Vol.7, No.12, p.314-316, 1965
[2] J. J. Campbell and W. R. Jones, “A method of estimating optimal crystal cuts and propagation directions for excitation of piezoelectric surface waves,” IEEE Trans.Sonics and Ultrasonics, vol. SU-15, pp.209-217, October 1968
[3] T. C. Lim, G. W. Farnell, “Character of pseudo surface waves on anisotropic crystals,” Journal of the Acoustical Society of America, p.845-851, 1968
[4] J. J. Campbell and W. R. Jones, “A method of estimating optimal crystal cuts and propagation directions for excitation of piezoelectric surface waves,” IEEE Trans.Sonics and Ultrasonics, vol. SU-15, pp.209-217, October 1968
[5] V. P. Plesskii, Yu. A. Ten, “Influence of viscous loading of the surface of an acoustic line on the propagation of shear subsurface waves,” Sov. Phys. Acoust. 32(2), p.121-124, March-April 1986
[6] H. Meier, P. Russer, “Propagation characteristic of leaky surface acoustic waves for two thin metal layers on LiTaO3 substrate,” IEEE Ultrasonics Symposium, p.359-362, 1991
[7] Jun Kondoh, Showko Shiokawa, “A liquid sensor based on a shear horizontal SAW device,” Electronics and Communications in Japan, Part 2, vol. 76, No. 2, 1993
[8] Jun Kondoh, Showko Shiokawa, “Shear surface acoustic wave liquid sensor based on acoustoelectric interaction,” Electronics and Communications in Japan, Part 2, vol. 78, No. 1, 1995
[9] C. C. Tseng, “Elastic surface waves on free surface and metallized surface of CdS, ZnO, and PZT-4,” J. Appl. Phys. 38, No. 11, p.4281-4283, October 1967
[10] B. A. Auld, “Acoustic Fields and Waves in Solids,” vol.1&2, Krieger, 1990
[11] Herbert Goldstein, “Classical Mechanics,” New York Addison-Wisely, 1950
[12] C. K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless Communications,” Academic Press, 1998
[13] D. P. Morgan, “Surface-Wave Devices for Signal Processing,” Elsevier, 1985
[14] J. D. Achenbach, “Wave Propagation in Elastic Solids,” North-Hlooand Series in Applied Mathematics and Mechanics, Vol. 16
[15] J. J. Campbell and W. R. Jones, “Propagation of surface waves at the boundary between a piezoelectric crystal and a fluid medium,” IEEE Trans. Sonics and Ultrasonics, vol. SU-17, pp.71-76, October 1970
[16] G. Kovacs, M. Anchorn, H. E. Engan, G. Visintini and C. C. W. Ruppel, “Improved material constants for LiNbO3 and LiTaO3,” IEEE Ultrasonics Symposium, p.435-438, 1990
[17] Michio Kadota, “Surface acoustic wave characteristics of a ZnO/Quartz substrate structure having a large electromechanical coupling factor and a small temperature coefficient,” J. J. A. P., Vol. 36, pp. 3076-3080, May 1997
[18] T. C. Lim, G. W. Farnell, “Search for forbidden directions of elastic surface wave propagation in anisotropic crystals,” J. Appl. Phys. 39, No. 9, p.4319-4325, 1968
[19] H. Meier, P. Russer, “Analysis of leaky surface acoustic waves on LiTaO3 substrate,” IEEE Ultrasonics Symposium, p.378-383, 1992
[20] G. W. Farnell, “Properties of elastic surface wave,” Physical Acoustics, vol. 6, 1970
[21] Showko Shiokawa, Jun Kondoh, “Surface Acoustic Wave microsensors,” Electronics and Communications in Japan, Part 2, vol. 79, No. 3, 1996
[22] E. L. Adler, G.W. Farnell, J. Slaboszewicz and C. K. Jen, “Interactive PC software for SAW propagation in anisotropic multilayers,” IEEE Ultrasonics Symposium, p.103-107, 1988
[23] W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder and H. J. Shaw, “Analysis of Interdigital Surface Wave Transducers by Use of an Equivalent Circuit Model,” IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-17, No. 11, p.856-864, 1969
[24] Guy feuillard, Marc Lethieeq, “Comparative performance of piezoceramic and crystal SAW filters,”IEEE Transactions on Ultrasonics, Feroelectric, and Frequency Control, Vol.44, No. 1, p.194-200, 1997
[25] G. Kovacs, G.W. Lubking, M.J. Vellekoop and A. Venema, “Love Waves for (Bio)-Chemical Sensing in Liquids” IEEE Ultrasonics Symposium p.281-285, 1992
[26] 張銀谷, “自激式聲波感測器應用於液體之量測”, 成功大學機械工程學系碩士論文, 2004