簡易檢索 / 詳目顯示

研究生: 李雨哲
Li, Yu-Jhe
論文名稱: 非接觸式磷酸鋰鐵電池充電器之設計與研製
Design and Implementation of a Contactless Lithium Iron Phosphate Battery Charging Circuit
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 134
中文關鍵詞: 非接觸充電器磷酸鋰鐵電池
外文關鍵詞: Contactless, Charging Circuit, Lithium Iron Phosphate Battery
相關次數: 點閱:61下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研發一非接觸式充電系統,並以磷酸鋰鐵電池作為系統負載,於非接觸式主電力電路部分,考量其漏磁通現象將較傳統緊密耦合變壓器嚴重,係於兩側線圈加入補償電容,並利用阻抗匹配與諧振原理,提升系統效能。同時經由互感等效模型建立,推導系統輸出電壓公式,並統整一套設計流程,可依所需之系統規格參數,完成線圈設計。最後為使磷酸鋰鐵電池負載可於快速安全情況下完成充電,本文於非接觸系統輸出端,加入充電控制電路調整充電電壓與電流,同時經由電池特性之探討,擬訂合適之充電策略,並利用單晶片程式撰寫實現所需之充電控制。而為驗證所提方法之可行性,本文已完成電路實作及進行實際量測,測試結果與推導之數學式計算結果相近,且系統可於既定之輸出功率情況下,達成滿意之傳輸效率,並使電池容量符合飽電率要求,測試結果應有助於證實本文所提之設計方法,兼以具備實作研製參考價值。

    This thesis is aimed to design a contactless charging system for lithium iron phosphate battery. Compared to the traditional tightly coupled transformer, the flux-leakage phenomenon is found to be more serious in the contactless transformer, resulting in lower electric power transmission efficiency. In view of this drawback along with the consideration of impedance matching and circuit resonance, the proposed method adds compensation capacitors in two sides of coil such that the voltage drop caused by the leakage inductance can be more effectively eliminated. Meanwhile, the formulas for system output voltage based on the mutual inductance circuit model is derived, which is beneficial to form a systematic design procedure to accomplish the coil windings to satisfy the system specification requirements. Then, in order to charge the battery module under fast and safe conditions, a charging control circuit is also cascaded to regulate the charging voltage and current, by which the charging strategy is well developed and realized by the single-chip programming. To verify the feasibility of the proposed method, a prototype circuit has been established and tested. Experimental results of the overall system show that the output voltage is well matched with the derived equations, while the power transmission achieves a satisfactory efficiency on rated output power. The discharging capacity also reaches the required battery capacity as well. These testing results help to confirm the proposed design method and could be a useful reference for the related system design.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XIV 第一章 緒論 1 1-1 研究動機 1 1-2 實現方法與文獻回顧 3 1-3 內容大綱 7 第二章 非接觸變壓器等效模型與換流器諧振電路分析 9 2-1 簡介 9 2-2 非接觸變壓器等效模型分析 10 2-2-1 非接觸變壓器架構與磁路分析 10 2-2-2 非接觸變壓器等效電路模型分析 12 2-3 補償諧振電路分析 15 2-3-1 SS補償架構及其輸出特性分析 17 2-3-2 SP補償架構及其輸出特性分析 21 2-4 換流器諧振補償與整流濾波電路分析 24 2-4-1 各式換流器架構探討 25 2-4-2 整流濾波電路分析 28 2-4-3 換流器功率電晶體柔性切換分析 31 2-4-4 換流器與諧振補償電路之時序分析 36 第三章 鋰電池特性與充電法則介紹 46 3-1 簡介 46 3-2 鋰電池發展與特性介紹 46 3-3 充電法則介紹 51 3-3-1 定電流充電法 51 3-3-2 定電流-定電壓充電法 52 3-3-3 脈衝充電法 53 3-4 本文擬定之充電法則 54 第四章 系統軟硬體電路設計與規劃 57 4-1 前言 57 4-2 功率因數修正電路設計 58 4-3 非接觸系統之主電力電路設計 64 4-3-1 半橋式換流器及其驅動電路設計 64 4-3-2 非接觸變壓器及補償電容參數設計 68 4-3-3 整流濾波電路設計 77 4-3-4 過電流保護電路設計 78 4-4 充電控制電路設計 82 第五章 系統模擬與實驗結果 89 5-1 簡介 89 5-2 功率因數修正電路之測試 89 5-3 非接觸能量傳輸電路測試 97 5-3-1 輸出電壓與半橋式換流器柔性切換測試 98 5-3-2 補償電容諧振電路實測波形分析 102 5-3-3 非接觸系統效率實測 120 5-3-4 非接觸系統過電流保護電路測試 121 5-4 充電控制電路測試結果 125 第六章 結論與未來研究方向 128 6-1 結論 128 6-2 未來研究方向 129 參考文獻 130

    [1] Z. N. Low, R. A. Chinga, R. Tseng, and J. Lin, “Design and Test of a High-Power High-Efficiency Loosely Coupled Planar Wireless Power Transfer System,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 5, pp. 1801-1812, May 2009.

    [2] J. J. Casanova, Z. N. Low, and J. Lin, “Design and Optimization of a Class-E Amplifier for a Loosely Coupled Planar Wireless Power System,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 56, No. 11, pp. 830-834, November 2009.

    [3] Y. H. Liu, S. C. Wang, and R. C. Leou, “A Novel Primary-Side Controlled Contactless Battery Charger,” IEEE International Conference on Power Electronics and Drive Systems, Bangkok, Thailand, pp. 320-324, November 2007.

    [4] H. Y. Shen, J. Y. Lee, and T. W. Chang, “Study of Contactless Inductive Charging Platform with Core Array Structure for Portable Products,” IEEE International Conference on Consumer Electronics, Communications, and Networks, XianNing, China, pp. 756-759, April 2011.

    [5] X. Liu and S. Y. Hui, “Optimal Design of a Hybrid Winding Structure for Planar Contactless Battery Charging Platform,” IEEE Transactions on Power Electronics, Vol. 23, No. 1, pp. 455-463, January 2008.

    [6] P. Meyer, P. Germano, M. Markovic, and Y. Perriard, “Design of a Contactless Energy-Transfer System for Desktop Peripherals,” IEEE Transactions on Industry Applications, Vol. 47, No. 4, pp. 1643-1651, July 2011.

    [7] J. J. Casanova, Z. N. Low, and J. Lin, “Design and Optimization of a Class-E Amplifier for a Loosely Coupled Planar Wireless Power System,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 56, No. 11, pp. 830-834, November 2009.

    [8] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design Considerations for a Contactless Electric Vehicle Battery Charger,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 5, pp. 1308-1314, October 2005.

    [9] Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasuda, “Compact Contactless Power Transfer System for Electric Vehicles,” International Power Electronics Conference, Sapporo, Japan, pp. 807-813, June 2010.

    [10] K. W. Klontz, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “Contactless Power Delivery System for Mining Applications,” IEEE Transactions on Industry Applications, Vol. 31, No. 1, pp. 24-35, January 1995.

    [11] T. S. Chan and C. L. Chen, “LLC Resonant Converter for Wireless Energy Transmission System with PLL Control,” IEEE International Conference on Sustainable Energy Technologies, Singapore, pp. 136-139, November 2008.

    [12] G. Wang, W. Liu, M. Sivaprakasam, J. D. Weiland, and M. S. Humayun, “High Efficiency Wireless Power Transmission with Digitally Configurable Stimulation Voltage for Retinal Prosthesis,” IEEE EMBS Conference on Neural Engineering, Arlington, VA, USA, pp. 543-546, March 2005.

    [13] G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A New Concept: Asymmetrical Pick-Up for Inductively Coupled Power Transfer Monorail System,” IEEE Transactions on Magnetics, Vol. 42, No. 10, pp. 3389-3391, October 2006.

    [14] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Science Magazine, Vol. 317, No. 5834, pp. 83-86, June 2007.

    [15] S. L. Ho, J. Wang, W. N. Fu, and M. Sun, “A Comparative Study Between Novel Witricity and Traditional Inductive Magnetic Coupling in Wireless Charging,” IEEE Transactions on Magnetics, Vol. 47, No. 5, pp. 1522-1525, May 2011.

    [16] B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers,” IEEE Transactions on Power Electronics, Vol. 24, No. 7, pp. 1819-1825, July 2009.

    [17] C. J. Chen, T. H. Chu, C. L. Lin, and Z. C. Jou, “A Study of Loosely Coupled Coils for Wireless Power Transfer,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 57, No. 7, pp. 536-540, July 2010.

    [18] A. J. Moradewicz and M. P. Kazmierkowski, “Contactless Energy Transfer System with FPGA-Controlled Resonant Converter,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 9, pp. 3181-3190, September 2010.

    [19] O. H. Stielau and G. A. Covic, “Design of Loosely Coupled Inductive Power Transfer Systems,” IEEE International Conference on Power System Technology, Perth, WA, Australia, Vol. 1, pp. 85-90, December 2000.

    [20] W. Zhou and H. Ma, “Design Considerations of Compensation Topologies in ICPT System,” IEEE Annual Conference on Applied Power Electronics, Anaheim, CA, USA, pp. 985-990, February 2007.

    [21] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power Transfer Capability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer Systems,” IEEE Transactions on Industrial Electronics, Vol. 51, No. 1, pp. 148-157, February 2004.

    [22] G. Elliott, S. Raabe, G. A. Covic, and J. T. Boys, “Multiphase Pickups for Large Lateral Tolerance Contactless Power-Transfer Systems,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 5, pp. 1590-1598, May 2010.

    [23] J. Sallan, J. L. Villa, A. Llombart, J. F. Sanz, “Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 6, pp. 2140-2149, June 2009.

    [24] J. M. Rivas, Y. Han, O. Leitermann, A. D. Sagneri, and D. J. Perreault, “A High-Frequency Resonant Inverter Topology with Low-Voltage Stress,” IEEE Transactions on Power Electronics, Vol. 23, No. 4, pp. 1759-1771, July 2008.

    [25] N. Mohan, T. M. Undeland, and W. P. Robbins, “Power Electronics: Converters, Applications, and Design 3rd Edition,” John Wiley & Sons, October 2002.

    [26] R. L. Steigerwald, “A Comparison of Half-Bridge Resonant Converter Topologies,” IEEE Transactions on Power Electronics, Vol. 3, No. 2, pp. 174-182, April 1988.

    [27] Battery University Website. [Online]. Available: http://www. batteryuniversity.com

    [28] A. A.-H Hussein and I. Batarseh, “A Review of Charging Algorithms for Nickel and Lithium Battery Chargers,” IEEE Transactions on Vehicular Technology, Vol. 60, No. 3, pp. 830-838, March 2011.

    [29] R. C. Cope and Y. Podrazhansky, “The Art of Battery Charging,” The Fourteenth Annual Battery Conference on Application and Advances, Long Beach, CA, USA, pp. 233-235, January 1999.

    [30] Y. H. Liu and Y. F. Luo, “Search for an Optimal Rapid-Charging Pattern for Li-Ion Batteries Using the Taguchi Approach,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 12, pp. 3963-3971, December 2010.

    [31] G. C. Hsieh, L. R. Chen, and K. S. Huang, “Fuzzy-Controlled Li-Ion Battery Charge System with Active State-of-Charge Controller,” IEEE Transactions on Industrial Electronics, Vol. 48, No. 3, pp. 585-593, June 2001.

    [32] UC3854 Data Sheet, Texas Instruments, 1999.

    [33] P. C. Todd, “UC3854 Controlled Power Factor Correction Circuit Design,” Texas Instruments Application Note, 1999.

    [34] dsPIC30F4011/4012 Data Sheet, Microchip Technology Inc., 2005.

    [35] Wireless Power Consortium Website. [Online]. Available: http://www. wirelesspowerconsortium.com

    無法下載圖示 校內:2022-06-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE