| 研究生: |
游皓翔 You, Hau-Shiang |
|---|---|
| 論文名稱: |
鋁基四元高熵合金薄膜材料特性及其於紫外光波段光學特性之研究 Research of characteristics of aluminum-based quaternary high entropy alloy thin films and its optical properties in UV wavelengths |
| 指導教授: |
施權峰
Shih, Chuan-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 高熵合金 、腐蝕行為 、反射率 、硬度 |
| 外文關鍵詞: | High-Entropy Alloy, corrosion behavior, reflectance, hardness |
| 相關次數: | 點閱:59 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
AlCoZnNi 與Al透過共濺鍍去分析其機械特性、腐蝕特性以及其光學特性,並應用於LED 外封裝反射層的可行性。研究的材料包括Al25Co25Zn25Ni25、Al36Co22Zn21Ni21、Al45Co18Zn17Ni20、Al50Co16Zn17Ni17、Al60Co13Zn13Ni14、Al65Co12Zn12Ni11、Al81Co6Zn6Ni7薄膜,以及熱退火對Al50Co16Zn17Ni17、Al60Co13Zn13Ni14、Al65Co12Zn12Ni11光學特性的影響。
由於Al-Zn 本身存在相分離的特性,使得此材料有富鋁以及富鋅的雙層特性。透過機械特性以及耐腐蝕測試研究此材料,可以觀察到相分離的雙層結構以及高熵效應可以使硬度增加,在3.5 wt.%的NaCl溶液中,隨著Al含量的減少以及Co、Zn、Ni 鈍化金屬比例的增加會讓整體的腐蝕電位以及孔蝕電位有所上升,Al25Co25Zn25Ni25 的腐蝕電位以及孔蝕電位分別為 -0.77376 V和0.7 V,代表著高熵合金本身的高抗腐蝕特性。
研究Al50Co16Zn17Ni17、Al60Co13Zn13Ni14、Al65Co12Zn12Ni11反射率高於Au的光學特性以及其反射率的熱穩定性,可以發現經過RTA 200℃、300℃、400℃後,特別是Al60Co13Zn13Ni14、Al65Co12Zn12Ni11 在UVC波段的反射率甚至高於Al,也可以有效取代Al本身容易氧化以及退火過後的晶粒成長讓粗糙度上升進而讓反射率降低的因素。
The aim of this research makes a thorough inquiry into the mechanical properties, thermal stability, and corrosion behavior of AlCoZnNi (HEA1) and Al that were made from co-sputtering. Finding out the correlation between HEA1 characteristics and optical properties would be the main axis of this research.
The reflectance of Al65Co12Zn12Ni11 increased due to reduction of roughness by Sluggish diffusion effect from room temperature to 200 ℃, 300 ℃and 400 ℃ annealing about 60.02%, 69.31%, 67.87% and 66.54% at 280 nm in UV band respectively. Corrosion potential and pitting potential of HEA1 within -0.77376 V and 0.7 V respectively from the corrosion test after packaging in 3.5wt. % NaCl. Represent the high corrosion resistance of the high-entropy alloy.
Another breakthrough discovery of the spinodal decomposition caused by Al-Zn. The characteristic of this material was aluminum-rich and zinc-rich bilayer, that the period of the bilayer will increase also happened on the sputtering rate. The bilayer of spinodal decomposition and solid solution can enhance the mechanical properties. The hardness of Al45Co19Zn16Ni20 was largest about 12.86 GPa.
[1] H. Tomizawa, H. Dewa, A. Mizuno, T. Taniuchi, and H. Hanaki, "FIRST EMISSION OF NOVEL PHOTOCATHODE GUN GATED BY Z-POLARIZED LASER PULSE."
[2] C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, "Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements," Metallurgical and Materials Transactions A, vol. 36, no. 4, pp. 881-893, 2005/04/01 2005.
[3] J.-W. Yeh, S.-J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chou, "Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements," Metallurgical and Materials Transactions A, vol. 35, no. 8, pp. 2533-2536, 2004.
[4] J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, and Y. Liu, "A review on fundamental of high entropy alloys with promising high–temperature properties," Journal of Alloys and Compounds, vol. 760, pp. 15-30, 2018.
[5] O. N. Senkov, J. M. Scott, S. V. Senkova, F. Meisenkothen, D. B. Miracle, and C. F. Woodward, "Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy," Journal of Materials Science, vol. 47, no. 9, pp. 4062-4074, 2012.
[6] K.-H. Cheng, C.-H. Lai, S.-J. Lin, and J.-W. Yeh, "Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering," Thin Solid Films, vol. 519, no. 10, pp. 3185-3190, 2011.
[7] J. Chen, P. Niu, Y. Liu, Y. Lu, X. Wang, Y. Peng, and J. Liu, "Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy," Materials & Design, vol. 94, pp. 39-44, 2016.
[8] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie, "A fracture-resistant high-entropy alloy for cryogenic applications," Science, vol. 345, no. 6201, pp. 1153-1158, 2014.
[9] M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, and J.-W. Yeh, "Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys," Acta Materialia, vol. 59, no. 16, pp. 6308-6317, 2011.
[10] X. Feng, J. Zhang, Z. Xia, W. Fu, K. Wu, G. Liu, and J. Sun, "Stable nanocrystalline NbMoTaW high entropy alloy thin films with excellent mechanical and electrical properties," Materials Letters, vol. 210, pp. 84-87, 2018.
[11] R. K. Mishra and R. R. Shahi, "Phase evolution and magnetic characteristics of TiFeNiCr and TiFeNiCrM (M = Mn, Co) high entropy alloys," Journal of Magnetism and Magnetic Materials, vol. 442, pp. 218-223, 2017.
[12] N. Kumar, M. Fusco, M. Komarasamy, R. S. Mishra, M. Bourham, and K. L. Murty, "Understanding effect of 3.5 wt.% NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy," Journal of Nuclear Materials, vol. 495, pp. 154-163, 2017.
[13] Y. Yao, Z. Huang, P. Xie, S. D. Lacey, R. J. Jacob, H. Xie, F. Chen, A. Nie, T. Pu, M. Rehwoldt, D. Yu, M. R. Zachariah, C. Wang, R. Shahbazian-Yassar, J. Li, and L. Hu, "Carbothermal shock synthesis of high-entropy-alloy nanoparticles," Science, vol. 359, no. 6383, pp. 1489-1494, 2018.
[14] Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T. G. Nieh, and Z. Lu, "Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes," Nature, vol. 563, no. 7732, pp. 546-550, Nov 2018.
[15] R. Wang, Y. Tang, S. Li, Y. Ai, Y. Li, B. Xiao, L. a. Zhu, X. Liu, and S. Bai, "Effect of lattice distortion on the diffusion behavior of high-entropy alloys," Journal of Alloys and Compounds, vol. 825, 2020.
[16] Y. Shi, B. Yang, and P. Liaw, "Corrosion-Resistant High-Entropy Alloys: A Review," Metals, vol. 7, no. 2, 2017.
[17] N. Birbilis and R. G. Buchheit, "Electrochemical characteristics of intermetallic phases in aluminum alloys: an experimental survey and discussion," Journal of the Electrochemical Society, vol. 152, no. 4, p. B140, 2005.
[18] D. B. Miracle and O. N. Senkov, "A critical review of high entropy alloys and related concepts," Acta Materialia, vol. 122, pp. 448-511, 2017.
[19] J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, "Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes," Advanced Engineering Materials, vol. 6, no. 5, pp. 299-303, 2004.
[20] J.-W. Yeh, "The Development of High-Entropy Alloys," Hua Kang Journal of Engineering, vol. 27, pp. 1-18, 2011.
[21] D. Miracle, "Critical assessment 14: High entropy alloys and their development as structural materials," Materials Science and Technology, vol. 31, no. 10, pp. 1142-1147, 2015.
[22] R. Kozak, A. Sologubenko, and W. Steurer, "Single-phase high-entropy alloys – an overview," Zeitschrift für Kristallographie - Crystalline Materials, vol. 230, no. 1, 2015.
[23] Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, "Microstructures and properties of high-entropy alloys," Progress in Materials Science, vol. 61, pp. 1-93, 2014.
[24] M.-H. Tsai and J.-W. Yeh, "High-Entropy Alloys: A Critical Review," Materials Research Letters, vol. 2, no. 3, pp. 107-123, 2014.
[25] D. B. Miracle, "Critical Assessment 14: High entropy alloys and their development as structural materials," Materials Science and Technology, vol. 31, no. 10, pp. 1142-1147, 2015.
[26] K. Y. Tsai, M. H. Tsai, and J. W. Yeh, "Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys," Acta Materialia, vol. 61, no. 13, pp. 4887-4897, 2013.
[27] H. Hertz, Miscellaneous papers. Macmillan, 1896.
[28] W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of materials research, vol. 7, no. 6, pp. 1564-1583, 1992.
[29] W. C. Oliver and G. M. Pharr, "Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology," Journal of materials research, vol. 19, no. 1, pp. 3-20, 2004.
[30] R. King, "Elastic analysis of some punch problems for a layered medium," International Journal of Solids and Structures, vol. 23, no. 12, pp. 1657-1664, 1987.
[31] B. N. Popov, Corrosion engineering: principles and solved problems. Elsevier, 2015.
[32] E. McCafferty, Introduction to corrosion science. Springer Science & Business Media, 2010.
[33] D. A. Jones, "Principles and Prevention of Corrosion. Prentice Hall, Inc," Upper Saddle River, New Jersey, 1996.
[34] N. Perez, "Electrochemical corrosion," in Electrochemistry and Corrosion Science: Springer, 2016, pp. 1-23.
[35] C. Jirarungsatian and A. Prateepasen, "Pitting and uniform corrosion source recognition using acoustic emission parameters," Corrosion Science, vol. 52, no. 1, pp. 187-197, 2010.
[36] J. M. Kolotyrkin, "Pitting corrosion of metals," Corrosion, vol. 19, no. 8, pp. 261t-268t, 1963.
[37] E. McCafferty, "Electrochemical behavior of iron within crevices in nearly neutral chloride solutions," Journal of the Electrochemical Society, vol. 121, no. 8, p. 1007, 1974.
[38] S. Babar and J. Weaver, "Optical constants of Cu, Ag, and Au revisited," Applied Optics, vol. 54, no. 3, pp. 477-481, 2015.
[39] P. Johnson and R. Christy, "Optical constants of transition metals: Ti, v, cr, mn, fe, co, ni, and pd," Physical review B, vol. 9, no. 12, p. 5056, 1974.
[40] A. D. Rakić, "Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum," Applied optics, vol. 34, no. 22, pp. 4755-4767, 1995.
[41] A. Sytchkova, A. Belosludtsev, L. Volosevičienė, R. Juškėnas, and R. Simniškis, "Optical, structural and electrical properties of sputtered ultrathin chromium films," Optical Materials, vol. 121, p. 111530, 2021.
[42] W. S. Werner, K. Glantschnig, and C. Ambrosch-Draxl, "Optical constants and inelastic electron-scattering data for 17 elemental metals," Journal of Physical and Chemical Reference Data, vol. 38, no. 4, pp. 1013-1092, 2009.
[43] A. Gibaud and G. Vignaud, "Specular reflectivity from smooth and rough surfaces," in X-ray and Neutron Reflectivity: Springer, 2009, pp. 85-131.
[44] G. Hass, W. Hunter, and R. Tousey, "Influence of purity, substrate temperature, and aging conditions on the extreme ultraviolet reflectance of evaporated aluminum," JOSA, vol. 47, no. 12, pp. 1070-1073, 1957.
[45] G. HASS, "Filmed Surfaces for Reflecting Optics*," 1955.
[46] X. Liu, Y. Mou, H. Wang, R. Liang, X. Wang, Y. Peng, and M. Chen, "Enhanced light extraction of deep ultraviolet light-emitting diodes by using optimized aluminum reflector," Appl Opt, vol. 57, no. 25, pp. 7325-7328, Sep 1 2018.
[47] A. R. Moreira, Z. Panossian, P. Camargo, M. F. Moreira, I. Da Silva, and J. R. De Carvalho, "Zn/55Al coating microstructure and corrosion mechanism," Corrosion science, vol. 48, no. 3, pp. 564-576, 2006.
[48] I. O. Wallinder, C. Leygraf, C. Karlen, D. Heijerick, and C. Janssen, "Atmospheric corrosion of zinc-based materials: runoff rates, chemical speciation and ecotoxicity effects," Corrosion science, vol. 43, no. 5, pp. 809-816, 2001.
[49] J. F. van Eijnsbergen, Duplex systems: hot-dip galvanizing plus painting. Newnes, 2012.
[50] K. Rundman and J. Hilliard, "Early stages of spinodal decomposition in an aluminum-zinc alloy," Acta metallurgica, vol. 15, no. 6, pp. 1025-1033, 1967.
[51] T. Kaewmaneekul and G. Lothongkum, "Effect of aluminium on the passivation of zinc–aluminium alloys in artificial seawater at 80 C," Corrosion science, vol. 66, pp. 67-77, 2013.
校內:2027-08-30公開