簡易檢索 / 詳目顯示

研究生: 施耀深
Shih, Yao-Shen
論文名稱: 使用顆粒影像測速技術分析通風系統對室內空間氣流之影響
Using particle image velocimetry to analyze the effect of ventilation system on the indoor air flow patterns
指導教授: 吳毓庭
Wu, Yu-Ting
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 55
中文關鍵詞: 顆粒影像測速風洞實驗小型腔體紊流強度
外文關鍵詞: Particle image velocimetry, Wind tunnel experiment, Small cavity, Turbulence intensity
相關次數: 點閱:79下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了改善室內空間通風方式,以加裝通風系統提升房間空氣流動情形,本研究使用6 m × 6 m × 3.6 m房間尺寸等比例縮小30倍得到200 mm × 200 mm × 120 mm小型腔體,並使用通風系統的送風口寬度對腔體尺寸無因次化,以模擬在室內安裝通風系統之可行性,並可提供至現實全尺寸室內空間中作為參考示範。本次實驗使用顆粒影像測速儀(Particle Image Velocimetry, PIV)量測氣流在小型腔體內的變化。實驗方式為,將小型腔體放置在開放式風洞內,使用吸入式風扇提供腔體氣流,並固定腔體送風口速度與排風口尺寸,改變腔體送風口數量,分別為一、三、五個,在每個條件下量測腔體空氣交換率、各方向平均速度、各方向無因次化速度、動量通量以及紊流強度。
    為固定腔體送風口速度,使用變頻器控制風洞的吸入式風扇轉速達成一致速度。因顆粒影像測速儀須將雷射光頁穿透實驗腔體,使雷射光頁照射到進入腔體內之示蹤粒子,達成散射目的,方能使得相機能拍攝到示蹤粒子,故在實驗腔體相機拍攝面與雷射照射面與使用透明壓克力組成,其餘部分為減少雷射光頁反光,使用霧黑壓克力作為腔體材料。為獲得時間平均速度場數據,使用顆粒影像測速儀在每種條件下都進行300組瞬時速度場量測,並將所有量測結果平均。
    實驗結果顯示,在單送風口模式下,僅有送風口下方的扇形面積有明顯的氣流流動,且在靠近腔體壁面出現有微小回流現象。在三送風口模式下,還是能由紊流強度輪廓圖觀察出腔體內依然有部分區域氣流變動量極小。五送風口則是有著最大的氣流變動量。比較三種送風口數量的表現,三送風口與五送風口因為增加送風口數量改善氣流流動情況。在送風口數量選擇上,單送風口與五送風口並不適合作為此空間大小的通風裝置架構。單送風口的配置雖然能帶動腔體內空氣流動,但僅限於送風口下方區域,且無法抑制回流的現象,以現實情況來說,有可能導致人體呼吸道所散播的氣融膠持續存留在室內空間,而無法順利排出室內空間造成間接感染。五送風口在流動情況看似有著最佳表現,但因為過多的送風口數量導致送風流量遠大於排風流量,造成腔體內壓力梯度的產生,使得空氣進入腔體內速度急遽減緩,在調整送風速度上會出現困難。

    In order to improve the ventilation mode of the indoor space and install a ventilation system to improve the air flow in the room, this study uses a small cavity of 200 mm × 200 mm × 120 mm to simulate the feasibility of installing a ventilation system in the room and provide a realistic Full size interior space as a reference demonstration. In this experiment, a particle image velocimetry (Particle Image Velocimetry, PIV) was used to measure the change of airflow in a small cavity.
    The experimental method is to place a small cavity in an open wind tunnel, use a suction fan to provide air flow in the cavity, and fix the speed and size of the air outlet in the cavity, and change the number of air outlets in the cavity, which are 1, 3, and 5. Measure the cavity air exchange rate, average velocity in each direction, dimensionless velocity in each direction, momentum flux and turbulence intensity under each condition.

    摘要 I Extended Abstract III 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 符號表 XII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-2-1 SARS-CoV-2與室內傳播 3 1-2-2 通風系統 3 1-2-3 顆粒影像測速技術發展 4 1-2-4 顆粒影像測速在小型腔體內的應用 5 1-3 本文架構 6 第二章 實驗設備 7 2-1 風洞設施 7 2-2 顆粒影像測速儀 9 2-2-1 氣融膠產生器 9 2-2-2 高解析度攝影機 10 2-2-3 脈衝式雷射及透鏡組 11 2-2-4 訊號產生器 12 2-3 影像分析軟體 12 2-4 實驗腔體 13 第三章 研究方法以及實驗流程 19 3-1 PIV分析方法 19 3-1-1 PIV尺寸校正 19 3-1-2 詢問視窗(Interrogation window) 20 3-1-3 移動視窗(Moving windows) 21 3-1-4 互相關分析(Cross-correlation) 22 3-2 實驗流程 24 3-2-1 雷射光路設置 25 3-2-2 相機設置 25 3-2-3 雷射與相機同步設置 27 3-2-4 腔體拍攝 28 第四章 結果與討論 29 4-1 空氣交換率(Air Change per Hour, ACH) 33 4-2 腔體內無因次化速度 35 4-3 動量通量(Momentum Flux , MF) 42 4-4 紊流強度(Turbulence Intensity , TI) 45 第五章 結論 51 參考文獻 53

    [1] World Health Organization, "Coronavirus disease (COVID-19): How is it transmitted?," 2021.
    [2] World Health Organzation, "Modes of transmission of virus causing COVID-19 : implications for IPC precaution recommendations," 2020.
    [3] World Health Organization, "Coronavirus disease (COVID-19): Ventilation and air conditioning," 2021.
    [4] World Health Organization, "Roadmap to improve and ensure good indoor ventilation in the context of COVID-19," 2021.
    [5] L. Morawska and J. Cao, "Airborne transmission of SARS-CoV-2: The world should face the reality," Environment International, vol. 139, 2020.
    [6] Z.-D. Guo, Z.-Yi. Wang, S.-F. Zhang, X. Li, L. Li, C. Li, Y. Cui, R.-B. Fu, Y.-Z. Dong, X.-Y. Chi, M.-Y. Zhang, K. Liu,C. Cao, B. Liu, K. Zhang, Y.-W. Gao, B. Lu and W. Chen, "Aerosol and Surface Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards," Emerging Infectious Diseases, vol. 26, no. 7, pp. 1586-1591, 2020.
    [7] L. Hamner, P. Dubbel, Ian Capron, A. Ross, A. Jordan, J Lee, J. Lynn, A. Ball, S. Narwal, S. Russell, D. Patrick and H. Leibrand, "High SARS-CoV-2 Attack Rate Following Exposure at a Choir Practice," Morbidity and Mortality Weekly Report, 2020.
    [8] N. Charlotte, "High Rate of SARS-CoV-2 Transmission Due to Choir Practice in France at the Beginning of the COVID-19 Pandemic," Journal of Voice, 2020.
    [9] P. Wargocki, D.P. Wyon, Y.K. Baik, G. Clausen and P.O. Fanger, “Perceived Air Quality, Sick Building Syndrome (SBS),” INDOOR AIR, pp. 165-179, 1999.
    [10] B. Yang, A.K. Melikov, A. Kabanshi, C. Zhang, F.S. Bauman, G. Cao, H. Awbi, H. Wigö, J. Niu, K.W.D. Cheong, K.W. Tham, M. Sandberg, P.V. Nielsen, R. Kosonen, R. Yao, S. Kato, S.C. Sekhar, S. Schiavon, T. Karimipanah and X. Li, "A review of advanced air distribution methods - theory, practice, limitations and solutions," Energy & Buildings, vol. 202, 2019.
    [11] R.J. Adrian, "Twenty years of particle image velocimetry," Experiments in Fluids, vol. 39, p. 159–169, 2005.
    [12] C.J.D. Pickering and N.A. Halliwell, "Laser speckle photography and particle image velocimetry:," Applied Optics, vol. 23, no. 17, pp. 2961-2969, 1984.
    [13] R.D. Keane and R.J. Adrian, "Theory of cross-correlation analysis of PIV images," Applied Scientific Research, vol. 49, pp. 191-215, 1992.
    [14] Q.-Y. Chen, "Ventilation performance prediction for buildings: A method overview and recent applications," Building and Environment, vol. 44, p. 848–858, 2008.
    [15] J.-H. Kang and S.-J. Lee, "Improvement of natural ventilation in a large factory building using," Building and Environment, vol. 43, p. 2132–2141, 2008.
    [16] A. Li, E. Qin, B. Xin, G. Wanga and J. Wang, "Experimental analysis on the air distribution of powerhouse of Hohhot hydropower station with 2D-PIV," Energy Conversion and Management, vol. 51, p. 33–41, 2010.
    [17] Y.-S. YU, "A wind-tunnel investigation on turbulent inflow and miniature wind turbine wake using different velocimetry methods," National Cheng Kung University Department of Engineering Science, 2021.
    [18] C.-F. Hsu, "A Study on the Particle Size Distribution from Self-made Laskin Nozzles," National Cheng Kung University Department of Engineering Science, 2021.
    [19] E. Pawar, "A Review Article on Acrylic PMMA," IOSR Journal of Mechanical and Civil Engineering, vol. 13, pp. 1-4, 2016.
    [20] C.Tuchinda, S. Srivannaboon, H. W. Lim, "Photoprotection by window glass, automobile glass, and sunglasses," Journal of the American Academy of Dermatology, vol. 54, pp. 845-854, 2006.
    [21] M. Raffel, C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley and J. Kompenhans, Particle Image Velocimetry : A Practical Guide, Springer, 2018.
    [22] H. Hu, T. Sage, T. Kobayashi, k. Okamoto and N. Taniguchi, "Evaluation of the Cross Correlation Method by Using PIV Standard Images," Journal of Visualization, vol. 1, no. 1, pp. 87-94, 1998.
    [23] R.D. Keane and R. J. Adrian, "Optimization of Particle Image Velocimeters I. Double pulsed systems," Measurement Science and Technology, vol. 11, no. 1, pp. 1202-1215, 1990.
    [24] PIVTEC GmbH, “PIVview User Manual,” 2006.
    [25] S. Scharnowski and C. J. Kähler, "Particle image velocimetry - Classical operating rules from today’s perspective," Optics and Lasers in Engineering, vol. 135, 2020.
    [26] N.L. Gilbert, M. Guay, D. Gauvin, R.N. Dietz, C. C. Chan and B. Le´vesque, "Air change rate and concentration of formaldehyde in residential indoor air," Atmospheric Environment, vol. 42, no. 10, pp. 2424-2428, 2008.
    [27] 陳川萬、謝書榮, “職場整體換氣性能規範之探討,” 行政院勞工委員會勞工安全衛生研究所, 2009.
    [28] 內政部營建署, “建築技術規則,” 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE