簡易檢索 / 詳目顯示

研究生: 張艾琳
ZHANG, AI-LIN
論文名稱: 建成環境周邊地區影響地表臭氧生成與消耗潛力因子之研究
Influence Factors on Surface Ozone Production and Consumption in Built Environment
指導教授: 李俊霖
Lee, Chun-Lin
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 112
中文關鍵詞: 建成環境臭氧氮氧化物NMHC分量迴歸高汙染事件
外文關鍵詞: Built Environment, O3, Quantile Regression, High Pollution Event
相關次數: 點閱:103下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臭氧生成涉及前驅物,棘手程度已逐漸超越PM2.5,成為指標型之空氣污染物。本研究基於臭氧與其前驅物間光動態平衡(photo-stationary state, PSS)概念,以建成環境為主體,建構地表臭氧生成與消耗框架。針對2006、2016、2021年度臭氧高污染事件,以臺北、新北、基隆、桃園與新竹地區空氣品質監測站周邊1.5公里為範圍,使用監測站之臭氧與其前驅物濃度資料,搭配國土利用調查資料、三維建物與道路圖資等資料集,建立迴歸模型。採用分量迴歸(Quantile Regression, QR)與最小平方法(Ordinary Least Squares, OLS),系統性分析建成環境因子如何影響臭氧及其前驅物NOₓ 與 NMHC。研究發現,相比於OLS模型,QR 模型提供了更多的細節。特別是汙染物濃度分位數低於 25% 或高於 75% 的極端情況,往往更顯著、更具影響力。建成環境因子對臭氧生成與消耗的影響在不同濃度分位數下亦呈現顯著差異 (p<0.001),例如在低濃度臭氧地區,農業活動顯著影響當地生物源 VOCS 的釋放。而交通與污染設施對臭氧及前驅物的影響強度與方向性,均隨污染物濃度而變化。研究突破了過往空氣污染研究專注於分析平均值的侷限性,更全面討論建成環境因子在不同污染濃度條件下的影響關係。提出基於迴歸模型與空間差異的城市空氣污染防制建議,為空間規劃提供更多環境數據,以數據支持健康與永續城市的發展、應對全球氣候變遷帶來的挑戰。

    This study examines how built environment factors impact ozone production and consumption, using data from Taipei, Keelung, Taoyuan, and Hsinchu. Employing Quantile Regression (QR) and Ordinary Least Squares (OLS), the results show significant variations (p<0.001) across different quantiles. QR reveals more detailed effects, especially in extreme conditions where pollutant concentrations are notably low or high, highlighting the nuanced influence of urban design on air quality. These insights are crucial for developing targeted urban planning strategies to control air pollution.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 研究流程 3 第二章 文獻回顧 5 第一節 城市空氣污染與污染危害 5 第二節 建成環境與臭氧污染之相關研究 13 第三節 影響臭氧生成與消耗之相關研究 17 第三章 研究設計 20 第一節 研究提問 20 第二節 研究範疇 20 第三節 研究方法與內容 25 第四節 研究資料建置 31 第四章 研究結果 40 第一節 敘述性統計 40 第二節 相關性分析 50 第三節 普通最小平方法與分量迴歸模型 56 第四節 小結 64 第五章 討論 65 第一節 利於生物源 VOCS 排放(A) 與利於乾沉降(E)之建成環境因子 66 第二節 利於 NOX、人為源VOCS 排放(B) 與利於滴定反應(D) 之建成環境因子 73 第六章 結論與建議 83 第一節 結論 83 第二節 建議與研究限制 85 參考文獻 87 附錄一、土地使用分類對照表 93 附錄二、各測站變數平均值表 94 附錄三、OLS與QR模型摘要 96

    行政院環境保護署(2020)。空氣污染防制方案 (109 年至 112 年) (核定本)。
    行政院環境保護署(2021)。辦理空品區空氣品質改善策略及臭氧前驅物綜合管制研析計畫。
    張艮輝,陳杜甫,蔡長佑(2021)。臭氧(O3)污染改善之挑戰與空氣品質再升級。工程,94:2 2021.06,59-76。
    環境部(2023)。空氣污染防制方案(113年至116年)(核定本)。
    Agrawal, M., Singh, B., Rajput, M., Marshall, F., & Bell, J. N. B. (2003). Effect of air pollution on peri-urban agriculture: a case study. Environmental Pollution, 126(3), 323-329. doi:10.1016/S0269-7491(03)00245-8
    Aneja, V. P., & Li, Z. (1992). Characterization of ozone at high elevation in the eastern United States: Trends, seasonal variations, and exposure. Journal of Geophysical Research: Atmospheres, 97(D9), 9873-9888. doi:10.1029/92jd00503
    Arghavani, S., Malakooti, H., & Bidokhti, A. A. (2019). Numerical evaluation of urban green space scenarios effects on gaseous air pollutants in Tehran Metropolis based on WRF-Chem model. Atmospheric Environment, 214, 18. doi:10.1016/j.atmosenv.2019.116832
    Barros, N., Fontes, T., Silva, M. P., & Manso, M. C. (2013). How wide should be the adjacent area to an urban motorway to prevent potential health impacts from traffic emissions? Transportation Research Part A-Policy and Practice, 50, 113-128. doi:10.1016/j.tra.2013.01.021
    Bytnerowicz, A., Badea, O., Barbu, I., Fleischer, P., Fraczek, W., Gancz, V., Godzik, B., Grodzinska, K., Grodzki, W., Karnosky, D., Koren, M., Krywult, M., Krzan, Z., Longauer, R., Mankovska, B., Manning, W. J., McManus, M., Musselman, R. C., Novotny, J., Popescu, F., Postelnicu, D., Prus-Glowacki, W., Skawinski, P., Skiba, S., Szaro, R., Tamas, S., Vasile, C. (2003). New international long-term ecological research on air pollution effects on the Carpathian Mountain forests, Central Europe. Environment International, 29(2-3), 367-376. doi:10.1016/S0160-4120(02)00172-1
    Chou, C. C. K., Liu, S. C., Lin, C. Y., Shiu, C. J., & Chang, K. H. (2006). The trend of surface ozone in Taipei, Taiwan, and its causes: Implications for ozone control strategies. Atmospheric Environment, 40(21), 3898-3908. doi:10.1016/j.atmosenv.2006.02.018
    Deelstra, T., & Girardet, H. (2000). Urban agriculture and sustainable cities. Bakker N., Dubbeling M., Gündel S., Sabel-Koshella U., de Zeeuw H. Growing Cities, Growing Food. Urban Agriculture on the Policy Agenda. Feldafing, Germany: Zentralstelle Für Ernährung Und Landwirtschaft (ZEL), 43, 66.
    Dias, D., Tchepel, O., & Antunes, A. P. (2016). Integrated modelling approach for the evaluation of low emission zones. Journal of Environmental Management, 177, 253-263. doi:10.1016/j.jenvman.2016.04.031
    Escobedo, F. J., Kroeger, T., & Wagner, J. E. (2011). Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environmental Pollution, 159(8), 2078-2087. doi:10.1016/j.envpol.2011.01.010
    European Commission. (2003). Ozone-climate interactions (No. Report 81, EUR 20623). Luxembourg: Isaksen, I.S.A. 13 (eds.).
    Gheshlaghpoor, S., Abedi, S. S., & Moghbel, M. (2022). The relationship between spatial patterns of urban land uses and air pollutants in the Tehran metropolis, Iran. Landscape Ecology, 13. doi:10.1007/s10980-022-01549-y
    Gómez-Baggethun, E., & Barton, D. N. (2013). Classifying and valuing ecosystem services for urban planning. Sustainable Urbanisation: A Resilient Future, 86, 235-245. doi:10.1016/j.ecolecon.2012.08.019
    Health Effects Institute. (2020). State of Global Air 2020 (Special Report). Boston, MA:Health Effects Institute. Retrieved from https://www.healthdata.org/research-analysis/library/state-global-air-2020
    Hoffmann, B. (2019). Air Pollution in Cities: Urban and Transport Planning Determinants and Health in Cities. In M. Nieuwenhuijsen & H. Khreis (Eds.), Integrating Human Health into Urban and Transport Planning: A Framework (pp. 425-441). Cham: Springer International Publishing. Retrieved from https://doi.org/10.1007/978-3-319-74983-9_21
    Hsu, C.Y., Wu, J.Y., Chen, Y.C., Chen, N.T., Chen, M.J., Pan, W.C., Lung, S.C.C., Guo, Y.L., Wu, C.D. (2019). Asian Culturally Specific Predictors in a Large-Scale Land Use Regression Model to Predict Spatial-Temporal Variability of Ozone Concentration. International Journal of Environmental Research and Public Health, 16(7). doi:10.3390/ijerph16071300
    Huszar, P., Karlický, J., Ďoubalová, J., Šindelářová, K., Nováková, T., Belda, M., Halenka, T., Žák, M., Pišoft, P. (2020). Urban canopy meteorological forcing and its impact on ozone and PM2.5: role of vertical turbulent transport. Atmospheric Chemistry and Physics, 20(4), 1977-2016. doi:10.5194/acp-20-1977-2020
    Institute for Health Metrics and Evaluation (IHME). (2020). GBD 2019 Cause and Risk Summary: Air pollution — Level 2 risk (No. 393). Seattle, USA: IHME: University of Washington. Retrieved from https://www.healthdata.org/results/gbd_summaries/2019/air-pollution-level-2-risk
    Jafari, A. J., Charkhloo, E., & Pasalari, H. (2021). Urban air pollution control policies and strategies: a systematic review. Journal of Environmental Health Science and Engineering, 19(2), 1911-1940. doi:10.1007/s40201-021-00744-4
    Jennifer A. Logan, Michael J. Prather, Steven C. Wofsy, & Michael B. McElroy. (1981). Tropospheric chemistry: A global perspective, 86(C8), 7210-7254.
    Jiang, X., Wiedinmyer, C., Chen, F., Yang, Z. L., & Lo, J. C. F. (2008). Predicted impacts of climate and land use change on surface ozone in the Houston, Texas, area. Journal of Geophysical Research: Atmospheres, 113(D20). doi:10.1029/2008JD009820
    Jorquera, H., Montoya, L. D., & Rojas, N. Y. (2019). Urban Air Pollution. In C. Henríquez & H. Romero (Eds.), Urban Climates in Latin America (pp. 137-165). Cham: Springer International Publishing. doi:10.1007/978-3-319-97013-4_7
    Karl, T., Lamprecht, C., Graus, M., Cede, A., Tiefengraber, M., Vila-Guerau de Arellano, J., Gurarie, D., Lenschow, D. (2023). High urban NOx triggers a substantial chemical downward flux of ozone. SCIENCE ADVANCES, 9(3). doi:10.1126/sciadv.add2365
    Karner, A. A., Eisinger, D. S., & Niemeier, D. A. (2010). Near-Roadway Air Quality: Synthesizing the Findings from Real-World Data. Environmental Science & Technology, 44(14), 5334-5344. doi:10.1021/es100008x
    Kley, D., Geiss, H., & Mohnen, V. A. (1994). Tropospheric ozone at elevated sites and precursor emissions in the United States and Europe. Atmospheric Environment, 28(1), 149-158. doi:10.1016/1352-2310(94)90030-2
    Koenker, R., & Bassett, G. (1978). Regression Quantiles. Econometrica, 46(1), 33-50. doi:10.2307/1913643
    Koenker, R. & Jose A. F. Machado. (1999). Goodness of Fit and Related Inference Processes for Quantile Regression. Journal of the American Statistical Association, 94(448), 1296-1310. doi:10.2307/2669943
    Kortsalioudakis, N., Moustaizis, S. D., & Tzortzakis, S. (2012). Laser Induced Tropospheric Ozone Control.
    Ku, C. A. (2020). Exploring the spatial and temporal relationship between air quality and urban land-use patterns based on an integrated method. Sustainability, 12(7). doi:10.3390/su12072964
    Lai, L. W., & Cheng, W. L. (2009). Air quality influenced by urban heat island coupled with synoptic weather patterns. Science of the Total Environment, 407(8), 2724-2733. doi:10.1016/j.scitotenv.2008.12.002
    Lee, C. (2019). Impacts of urban form on air quality in metropolitan areas in the United States. Computers Environment and Urban Systems, 77, 9. doi:10.1016/j.compenvurbsys.2019.101362
    Lovett, G.M., Tear, T.H., Evers, D.C., Findlay, S.E.G., Cosby, B.J., Dunscomb, J.K., Driscoll, C.T., Weathers, K.C. (2009). Effects of air pollution on ecosystems and biological diversity in the eastern United States. Annals of the New York Academy of Sciences, 1162, 99-135. doi:10.1111/j.1749-6632.2009.04153.x
    Mage, D., Ozolins, G., Peterson, P., Webster, A., Orthofer, R., Vandeweerd, V., Gwynne, M. (1996). Urban air pollution in megacities of the world. Atmospheric Environment, 30(5), 681-686. doi:10.1016/1352-2310(95)00219-7
    Majid Ezzati, Alan D. Lopez, Anthony Rodgers, & Christopher J.L. Murray. (2004). Comparative quantification of health risks: global and regional burden of disease attributable to selected Major Risk factors. Retrieved from https://pesquisa.bvsalud.org/portal/resource/pt/mis-33561
    Marquardt, D. W. (1970). Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, 12(3), 591-612.
    Massad, R.S., Lathière, J., Strada, S., Perrin, M., Personne, E., Stéfanon, M., Stella, P., Szopa, S., de Noblet-Ducoudré, N. (2019). Reviews and syntheses: influences of landscape structure and land uses on local to regional climate and air quality. Biogeosciences, 16(11), 2369-2408. doi:10.5194/bg-16-2369-2019
    Munir, S., Chen, H., & Ropkins, K. (2011). An investigation into the association of ozone with traffic-related air pollutants using a quantile regression approach (Vol. 15). WIT Press, Riga, Latvia.
    NASA LP DAAC. (2021). MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 (MOD13Q1) [Data set]. Retrieved from https://doi.org/10.5067/MODIS/MOD13Q1.006
    Ooi, M. C. G., Chan, A., Ashfold, M. J., Oozeer, M. Y., Morris, K. I., & Kong, S. S. K. (2019). The role of land use on the local climate and air quality during calm inter-monsoon in a tropical city. Geoscience Frontiers, 10(2), 405-415. doi:10.1016/j.gsf.2018.04.005
    Pearson, K. (1895). VII. Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58(347-352), 240-242.
    Porter, W. C., Heald, C. L., Cooley, D., & Russell, B. (2015). Investigating the observed sensitivities of air-quality extremes to meteorological drivers via quantile regression. Atmospheric Chemistry and Physics, 15(18), 10349-10366.
    Reich, P. B., & Amundson, R. G. (1985). Ambient levels of ozone reduce net photosynthesis in tree and crop species. Science (New York, N.Y.), 230(4725), 566-570. doi:10.1126/science.230.4725.566
    Romero, H., Ihl, M., Rivera, A., Zalazar, P., & Azocar, P. (1999). Rapid urban growth, land-use changes and air pollution in Santiago, Chile. Atmospheric Environment, 33(24), 4039-4047. doi:10.1016/S1352-2310(99)00145-4
    Sillman, S. (1999). The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, 33(12), 1821-1845. doi:10.1016/S1352-2310(98)00345-8
    Simpson, D., Arneth, A., Mills, G., Solberg, S., & Uddling, J. (2014). Ozone — the persistent menace: interactions with the N cycle and climate change. Current Opinion in Environmental Sustainability, 9-10, 9-19. doi:10.1016/j.cosust.2014.07.008
    Taha, H. (1996). Modeling impacts of increased urban vegetation on ozone air quality in the South Coast Air Basin. Atmospheric Environment, 30(20), 3423-3430. doi:10.1016/1352-2310(96)00035-0
    Ulpiani, G. (2021a). On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Science of The Total Environment, 751, 141727-141727. doi:10.1016/j.scitotenv.2020.141727
    Ulpiani, G. (2021b). On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Science of The Total Environment, 751, 141727-141727. doi:10.1016/j.scitotenv.2020.141727
    United Nations. (2015). General Assembly Resolution A/RES/70/1Transforming Our World, the 2030 Agenda for Sustainable Development.
    van den Hooven, E.H., Jaddoe, V.W.V., de Kluizenaar, Y., Hofman, A., Mackenbach, J.P., Steegers, E.A.P., Miedema, H.M.E.M., Pierik, F.H. (2009). Residential traffic exposure and pregnancy-related outcomes: a prospective birth cohort study. Environmental Health, 8(1), 59. doi:10.1186/1476-069X-8-59
    Wang, L., Tai, A.P.K., Tam, C.-Y., Sadiq, M., Wang, P., Cheung, K.K.W. (2020). Impacts of future land use and land cover change on mid-21st-century surface ozone air quality: distinguishing between the biogeophysical and biogeochemical effects. Atmospheric Chemistry and Physics, 20(19), 11349-11369. doi:10.5194/acp-2019-824
    Weng, Q., & Yang, S. (2006). Urban Air Pollution Patterns, Land Use, and Thermal Landscape: An Examination of the Linkage Using GIS. Environmental Monitoring and Assessment, 117(1), 463-489. doi:10.1007/s10661-006-0888-9
    World Health Organization. (1997). Health and Environment in Sustainable Development - Five years after the Earth Summit. Geneva: World Health Organization.
    World Health Organization. (2021). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. Retrieved from https://apps.who.int/iris/handle/10665/345329
    World Health Organization. Occupational and Environmental Health Team. (2000). Guidelines for air quality (No. WHO/SDE/OEH/00.02). Retrieved from https://apps.who.int/iris/handle/10665/66537
    Zhang, A. Q., Xia, C., & Li, W. F. (2022). Exploring the effects of 3D urban form on urban air quality: Evidence from fifteen megacities in China. Sustainable Cities and Society, 78, 18. doi:10.1016/j.scs.2021.103649
    Zhu, Z., Wang, G., & Dong, J. (2019). Correlation analysis between land Use/Cover change and air Pollutants—A case study in wuyishan city. Energies, 12(13). doi:10.3390/en12132545

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE