| 研究生: |
戴源 Dai, Yuan |
|---|---|
| 論文名稱: |
從臺灣二葉松及臺灣五葉松林下枯枝落葉層和發酵層中篩選松針分解微生物 Screening needle-decomposing microorganisms from litter and fermentation layers under trees of Pinus taiwanensis and Pinus morrisonicola |
| 指導教授: |
邱啟洲
Chiu, Chi-Chou |
| 共同指導教授: |
黃兆立
Huang, Chao-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 熱帶植物與微生物科學研究所 Institute of Tropical Plant Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 分解者 、松針落葉 、纖維素 、表面有機層 |
| 外文關鍵詞: | decomposer, pine needle litter, cellulose, LFH layer |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於松針落葉的自然分解需要消耗更多時間,導致針葉林中大量的松針落葉長時間堆積,容易引發災害造成巨大損失。本研究基於此,意在更好瞭解松針落葉分解情況,使災害可能變小。臺灣二葉松(Pinus taiwanensis)與臺灣五葉松(Pinus morrisonicola)是臺灣特有種,生長良好且具有代表性,作為取樣對象十分合適。為了更好瞭解本地植物種的落葉分解情況,避免可能的災害,需要更多瞭解松針分解微生物。盡可能多的篩選出分解者,進行觀察和研究。本實驗的目的是從臺灣二葉松及臺灣五葉松松針落葉中篩選出松針分解微生物,對其進行觀察、分類及進一步研究。本研究發現,在松針分解微生物的篩選過程中,相比於其他影響因素,枯枝落葉層與發酵層中出現的微生物種類差別更大,可以看出在分解篩選過程中表面有機層的影響尤其重大。其中有六種微生物更常出現在發酵層中或於發酵層中長勢更加,而枯枝落葉層則只有一種,發酵層相比枯枝落葉層能篩選出更多的微生物。本研究同時依形態區分共篩選出了 13 個類型的松針分解微生物。在對其進行分解能力的測試後,發現Aspergillus屬的3種真菌在纖維素培養基上初始生長速度更快、長勢更好、持續時間更久,推測其最具分解松針中纖維素之能力。
The natural decomposition of pine needle litter takes more time, resulting in the accumulation of large amounts of pine needle litter in coniferous forests over a long period of time, which can lead to catastrophes and significant losses. This study was conducted to better understand the decomposition of pine needle litter and to minimize the potential for disaster. Pinus taiwanensis and Pinus morrisonicola are endemic to Taiwan, and are well established and representative, so they are suitable for sampling. In order to better understand the decomposition of needle litter of local plant species and avoid possible disasters, we need to know more about the decomposing microorganisms of pine needles. As many decomposers as possible can be selected for observation and research. The purpose of this experiment was to screen out pine needle decomposing microorganisms from the needle litter of Pinus taiwanensis and Pinus morrisonicola in Taiwan, and to observe, classify, and further study them. In this study, we found that in the screening process of pine needle decomposition microorganisms, the differences between the litter layer and the fermentation layer were greater than other influencing factors, and the influence of the LFH layer was particularly significant in the screening process. Six microorganisms were more frequently found in the fermentation layer or grew more strongly in the fermentation layer, while only one was found in the litter layer, and more microorganisms were screened in the fermentation layer than in the litter layer. In this study, 13 types of pine needle decomposing microorganisms were selected by morphology. After testing their decomposition ability, three species of Aspergillus were found to have faster initial growth rate, better growth and longer duration on the cellulose medium, and were presumed to be the most capable of decomposing cellulose in pine needles.
李惠林,劉棠瑞,黃增泉,小山鐵夫,棣慕華。1994。臺灣植物誌第二版Flora of Taiwan 2nd edition。vol.1。
呂金誠,李明益,歐辰雄。1994。惠蓀實驗林場楠櫧帶次生林植群生態之研究。中興大學實驗林研究報告。16(1): 1-28。
Baldrian P, Kolařík M, Štursová M, et al. (2012). Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME Journal: Multidisciplinary Journal of Microbial Ecology. 6(2):248-258.
Berg B, McClaugherty C. (2003). Decomposition, humus formation, carbon sequestration. Plant litter.
Binkley D., Fisher R.F. (2013). Ecology and management of forest soils. 4th ed. Wiley-Blackwell.
Chae HM, Choi SH, Lee SH, Cha S, Shim JK, Yang KC. (2019). Effect of litter quality on needle decomposition for four pine species in Korea. Forests. 10(5).
Chapin FS, Matson PA, Mooney HA. (2002). Principles of terrestrial ecosystem ecology. Springer, New York.
Cornelissen J.H.C. (1996). An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol. 84:573-582.
Ergun R., Guo J., Huebner-Keese B. (2016). Cellulose. Encyclopedia of Food and Health. 2016:694-702.
Fernandez R, Bulacio N, Álvarez A, Pajot H, Aragón R. (2017). Fungal decomposers of leaf litter from an invaded and native mountain forest of NW Argentina. Antonie van Leeuwenhoek. 110(9):1207-1218.
Forest Practices Branch. (1997). Silviculture Prescriptions Field Methods Book.
Gołębiewski M, Tarasek A, Sikora M, Deja-Sikora E, Tretyn A, Niklińska M. (2019). Rapid Microbial Community Changes During Initial Stages of Pine Litter Decomposition. Microbial Ecology. 77(1):56-75.
Hood SM. (2010). Mitigating Old Tree Mortality in Long-Unburned, Fire-Dependent Forests [Electronic Resource] : A Synthesis / Sharon M. Hood. Fort Collins, CO : U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Research Station.
Hoorens B., David C., Rien A. (2010). Neighbour identity hardly affects litter-mixture effects on decomposition rates of New Zealand forest species. Oecologia. 162:479.
Jugran HP, Tewari A. (2022). Litter decomposition of Chir-Pine (Pinus roxburghii Sarg.) in the Himalayan region. Trees, Forests and People. vol. 8.
Kjøller A., Struwe S. (1982). Microfungi in Ecosystems: Fungal Occurrence and Activity in Litter and Soil. Oikos. 39(3):391-422.
Klotzbucher T., Kaiser K., Guggenberger G., Gatzek C., Kalbitz K. (2011). A new conceptual model for the fate of lignin in decomposing plant litter. Ecology. 92(5):1052-1062.
Koichiro Tamura, Glen Stecher, and Sudhir Kumar. (2021). MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution 38:3022-3027.
Lucia žifčáková, Tomáš V, Adina H, Petr B. (2016). Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environmental Microbiology. 18(1):288-301.
Ma Z-L, Gao S, Yang W-Q, Wu F-Z. (2015). Degradation characteristics of lignin and cellulose of foliar litter at different rainy stages in subtropical evergreen broadleaved forest. Chinese Journal of Ecology. 34(1):122-129.
Mahajan R., Nikitina A., Litti Y., Nozhevnikova A., Goel G. (2016). Autochthonous microbial community associated with pine needle forest litterfall influences its degradation under natural environmental conditions. Environ Monit Assess. 188:417.
Moore J.C., Berlow E.L., Coleman D.C., DE Ruiter P.C., Dong Q., Hastings A., Johnson N.C., Mccann K.S., Mel Ville K., Morin P.J., Nadelhoffer K., Rosemond A.D., Post D.M., Sabo J.L., Scow K.M., Vanni M.J., Wall D.H. (2004). Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7:584.
Osono T, Fukasawa Y, Takeda H. (2003). Roles of Diverse Fungi in Larch Needle-Litter Decomposition. Mycologia. 95(5):820-826.
Osono T., Takeda H. (2002). Comparison of Litter Decomposing Ability among Diverse Fungi in a Cool Temperate Deciduous Forest in Japan. Mycologia. 94(3):421-427.
Parsons S.A., Congdon R.A. (2008). Plant litter decomposition and nutrient cycling in north Queensland tropical rain-forest communities of differing successional status. J. Trop. Ecol. 24:317-327.
Pérez-Harguindeguy N., Díaz S., Cornelissen J.H., Vendramini F., Cabido M., Castellanos A. (2000). Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil. 218:21-30.
Sheffer E., Canham C.D., Kigel J., Perevolotsky A. (2015). Countervailing effects on pine and oak leaf litter decomposition in human-altered Mediterranean ecosystems. Oecologia. 177:1039-1051.
Soong J.L., Parton W.J., Calderon F., Campbell E.E., Cotrufo M.F. (2015). A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition. Biogeochemistry. 124(1-3):27-44.
Synytsya A, Novak M. (2014). Structural analysis of glucans. Ann Transl Med. 2(2):17.
The University of British Columbia. (2012). Faculty of Land and Food Systems.
University of Manchester. (2005). Pillows: A Hot Bed Of Fungal Spores. ScienceDaily.
Vaieretti M.V., Harguindeguy N.P., Gurvich D.E., Cingolani A.M., Cabido M. (2005). Decomposition dynamics and physico-chemical leaf quality of abundant species in a montane woodland in central Argentina. Plant Soil. 278:223-234.
Waring R.H., Schlesinger W.H. (1985). Forest ecosystems: concepts and management. Academic Press, New York and Toronto. 340.
Zhou Y., Clark M., Su J., Xiao C. (2015). Litter decomposition and soil microbial community composition in three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant and Soil. 386 (1-2):171-183.
校內:2027-08-26公開