| 研究生: |
許哲綸 Hsu, Jer-Lun |
|---|---|
| 論文名稱: |
鎖相迴路之內建時脈抖動量測方法 An On-Chip Method for PLL jitter Measurement |
| 指導教授: |
李昆忠
Lee, Kuen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 鎖相迴路 、時脈抖動量測 |
| 外文關鍵詞: | PLL, Jitter Measurment |
| 相關次數: | 點閱:104 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在單晶片或混合訊號系統中,鎖相迴路電路為一個重要的建構單元。鎖相迴路的應用很多如:去除時脈偏斜、降低時脈抖動,頻率合成與時脈資料回復等等。但隨著鎖相迴路應用的快速成長,設計複雜度的增加,鎖相迴路的測試變得相當困難,值得去重視。
對於鎖相迴路而言,時脈抖動是一個重要的參數,時脈抖動定義為正確時脈轉換時間點的誤差。在量測時脈抖動時,通常需要昂貴的測試儀器,所以本論文提出一個簡單的架構來偵測時脈抖動。在有時脈抖抖動發生時的狀況紀錄在一錯誤計數器中。之後,並得到一個錯誤次數的累積統計圖,經由分析此統計圖即可求得時脈抖動方均根值。本測試電路並沒有連接到鎖相迴路中易受影響的節點,所以並不會對電路效能有所影響 。
此外,我們亦設計操作範圍在600~900MHz的鎖相迴路,採用TSMC 0.35um的製程技術實現,以便和測試電路整合,達到內建自我測試的目標
In an SOC or a mixed-mode system, a phase-locked loop (PLL) is an important building block which provides many useful applications such as skew suppression, jitter reduction, frequency synthesizing, and clock and data recovery. With the variety of PLL applications and the increase of the design complexity, the testing of PLL has become a critical problem in SOC testing.
Jitter is a key parameter of a PLL and is defined as the deviation from the precise clock transition. Conventionally it needs an expensive Automatic Test Equipment (ATE) for jitter measurement. In this thesis, we propose a simple on-chip architecture to detect this timing error. If a timing error occurs, it is recorded in an error counter. Then a statistical chart of the error count can be plotted and the root-mean-square (RMS) value of the jitter can be obtained by analyzing the statistical chart. In our design, the test circuits do not access the sensitive nodes in the PLL circuit and will have minimum impact on the PLL performance.
We implement a PLL in order to integrate it with our test architecture and to verify our testable design the purpose of BIST. The range of the operating frequency of the PLL is 600~900MHz. The PLL is implemented using the TSMC 0.35um1P4M technology.
[1] A. Hajimiri, T. H. Lee, “The Design of Low Noise Oscillators,” Kluwer Academic Publishers, 1999.
[2] B. Razavi, “Monolithic phase-locked loops and clock recovery circuits,” IEEE Press, New York, USA, 1996.
[3] S. Kim, M. Soma, D. Risbud, “An Effective Defect-Oriented BIST Architecture for High-Speed Phase-Locked Loops,” IEEE 18th VLSI Test Symp., p231-236, 2000.
[4] S. Kim, M. Soma, “An All-Digital Built-In Self-Test for High-Speed Phase-Locked Loops,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on , Volume: 48 Issue: 2 , Feb. 2001 Page(s): 141 -150.
[5] B. R. Veillette, G. W. Robert, “On-Chip Measurement of the Jitter Transfer Function of Charge-Pump Phase-Locked Loops,” IEEE J. Solid-State Circuits, vol. 33, No. 3, pp. 483-491, March 1998.
[6] B. R. Veillette, G. W. Robert, “Stimulus generation for built-in self-test of charge-pump phase-locked loops,” in IEEE Proc. Int. Test Conf., vol. p. 698-707, 1998.
[7] S. Sunter, A. Roy, “BIST for Phase-Locked Loops in Digital Applications,” IEEE International Test Conf., p532-540, 1999.
[8] J. J. Chen, A. Roy, “PLL with On-Chip Jitter Measurement,” MS Thesis, Dpt. of
Electrical Engineering National Cheng Kung University, June 2001
[9] E. H. Armstrong, “A method of reducing disturbances in radio signaling by a system of frequency modulation,” in Proc. IRE, May 1936, vol. 24, No. 5, pp. 689-740.
[10] P. Goteti, G. Devarayanadurg, M. Soma, “DFT for Embedded Charge-Pump PLL Systems Incorporating IEEE 1149.1,” IEEE Custom Integrated Circuits Conf., Santa Clara, p210-213, May 1997.
[11] Neil H.E. West , Kamran Eshraghian “Principles of COMS VLSI Design,” Addison-Wesley Publishing Company 1993.
[12] W. Rhee, “Design of high-performance CMOS charge pumps in phase-locked loops,” Proceedings of the 1999 IEEE International Symposium on, vol.2, pp.545-548 1999.
[13] P. R. Gray and R. G. Meyer, “Analysis and Design of Analog Integrated Circuits,” NY John Wiley & Sons 1994.
[14] K, Lim, C. H. Park, D. S. Kim, B. Kim, ”A low-Noise Phase-Locked Loop Bandwidth Optimization,” IEEE J. Solid-State Circuits, vol. 35, N0. 6, June 2000, pp. 807-815.
[15] C. H. Park, B. Kim, “A Low-Noise, 900-MHz VCO in 0.6-um CMOS,” IEEE J. Solid-State Circuits, vol. 34, NO. 5, pp. 586-591 May 1999.
[16] S. J. Lee, B. Kim, and K. Lee, “A novel high-speed ring oscillator for multiphase clock generation using negative skewed delay scheme,” IEEE J. Solid-State Circuits, vol. 32, pp. 289-291, Feb 1997.
[17] J. Craninckx, M. S. J. Steyaert, “A 1.8GHz CMOS Low-Phase-Noise Voltage-Controlled Oscillator with Prescaler,” IEEE J. Solid-State Circuits, vol. 30, NO. 12, pp. 1474-1482, December 1995.
[18] S. J. Lee and H. J. YOO, “Race Logic Architecture (RALA): A Novel Logic Concept Using the Race Scheme of Input Variables,” IEEE J. Solid-State Circuits, vol. 37, NO. 2, pp.191-201, Feb 2002.
[19] B. W. Garlepp, K. S. Donnelly, J. Kim, P. S. Chau, J. L. Zerbe, C. Huang, C. V. Tran, C. L. Portmann, D. Stark, Y. F. Chan, T. H. Lee, M. A. Horowitz, “A Portable Digital DLL for High-Speed CMOS Interface Circuits,” IEEE J. Solid-State Circuits, vol. 34, NO. 5, pp. 632-644, May 1999.