簡易檢索 / 詳目顯示

研究生: 呂蕙安
Leu, Huei-An
論文名稱: 基於H∞控制理論之摩擦力及干擾補償架構之分析與改善
Analysis and Improvement of Friction and Disturbance Compensation Scheme based on H∞ Control Theory
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 92
中文關鍵詞: 摩擦力補償結合閉迴路干擾量觀測器之補償架構變形干擾補償器虛擬模型干擾補償器H∞控制理論
外文關鍵詞: friction compensation, PI-type closed-loop torque compensator, variant disturbance compensator, virtual plant disturbance compensator, H∞ control theory
相關次數: 點閱:145下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般來說,摩擦力及外部干擾量會對伺服控制系統的性能造成很大的影響。針對此問題,已有學者提出摩擦力補償方法和各種干擾量估測與補償技術,如結合閉迴路干擾量觀測器之補償架構、變型干擾補償器以及虛擬模型干擾補償器等,並以實驗分析比較各方法之性能。然而在伺服控制系統的穩定性與性能分析上,上述研究只利用傳統古典控制理論而並未以強健控制理論進行分析與探討。此外,由於摩擦力及干擾補償架構增加了控制系統轉移函數之階數,使得傳統的古典控制器設計方法難以適用。有鑒於此,本論文引入H∞控制理論,將其應用至一具有摩擦力及干擾補償架構之伺服控制系統並設計其H∞控制器,同時分析並比較H∞控制器、PID控制器、摩擦力及各種干擾補償架構的控制性能。最後透過電腦模擬驗證本論文所提方法之可行性。

    Generally speaking, friction force and external disturbance will result in performance deterioration of a servo control system. In order to cope with this problem, several studies have proposed different friction and disturbance estimation/compensation schemes, for example, PI-type closed-loop torque compensator, variant disturbance compensator, and virtual plant disturbance compensator, and more. In these studies, a performance comparison among different disturbance compensation schemes has been conducted. However, only the traditional classic control theory rather than the robust control theory is employed to analyze the stability and performance of the servo control system with friction and external disturbance. Furthermore, the friction and disturbance compensation scheme increases the order of the transfer function of a control system so that traditional controller design approaches may be difficult to apply. As a result, the H∞ control theory is exploited in this thesis to design the H∞ controllers for the servo control system with friction and disturbance compensation schemes. In addition, a performance comparison among the H∞ controller, PID controller, and different disturbance compensation schemes are also performed. Finally, a computer simulation is conducted so as to verify the feasibility of the proposed control method.

    中文摘要..........................I Abstract.......................................................II 誌謝.............................IV 目錄............................V 表目錄............................IX 圖目錄...........................X 第一章 緒論...........................1 1.1 簡介...................................................1 1.2 研究動機與目的.........................................1 1.3 文獻回顧...............................................2 1.4 論文架構...............................................4 第二章 如何用Simulink®模擬摩擦力現象...........................6 2.1 簡介LuGre模型...........................................6 2.2 用Simulink®模擬LuGre模型.................................9 2.3 驗證Simulink®方塊圖.....................................10 第三章 摩擦力及干擾補償架構...................................13 3.1 簡介..................................................13 3.2 代號說明..............................................13 3.3 干擾量觀測器..........................................14 3.3.1閉迴路干擾量觀測器................................14 3.4 PICTO補償架構........................................16 3.5 VDC補償架構.........................................20 3.6 VPDC補償架構........................................24 3.7 只觀察頻率響應圖以評估各補償架構表現的缺點............29 第四章 H∞控制理論及設計H∞控制器方法簡介.....................30 4.1 H∞控制理論簡介......................................30 4.2 H∞範數的定義........................................30 4.3 H∞控制理論的優點....................................32 4.3.1 H∞控制器可應付最惡劣的狀況.....................32 4.3.2 H∞控制器之強健性...............................34 4.4 候補的成本函數........................................34 4.4.1 靈敏度函數.......................................35 4.4.2 互補靈敏度函數...................................36 4.4.3 控制能量函數.....................................38 4.4.4 成本函數需滿足的最低條件.........................38 4.5 混合靈敏度問題........................................40 4.6 擴增系統矩陣與混合靈敏度問題..........................41 4.6.1 符號說明.........................................42 4.6.2 擴增系統矩陣.....................................43 第五章 設計H∞控制器及制定性能比較指標........................46 5.1 簡介..................................................46 5.2 設計方法..............................................46 5.3 設計流程..............................................49 5.4 權重函數選定的原則....................................50 5.4.1 W1(s)和W2(s)的最終形式.............................52 5.5 權重函數選定的考量.....................................53 5.6 性能指標與性能比較.....................................56 5.6.1 無補償時,控制器之性能比較......................56 5.6.2 各補償架構之性能比較............................57 第六章 模擬結果...............................................59 6.1 模擬架構...............................................59 6.1.1 模擬中使用的PID控制器和H∞控制器.................61 6.1.2 輸出外擾模擬訊號................................63 6.2 定位控制(無量測誤差)..................................64 6.2.1 定位控制(無量測誤差)模擬結果.....................64 6.3 定位控制(加入量測誤差)................................70 6.3.1 定位控制(加入量測誤差)模擬結果...................70 6.4 追蹤控制(加入量測誤差)................................82 6.4.1 追蹤控制(加入量測誤差)模擬結果...................82 第七章 結論與建議........................................88 參考文獻..................................................90

    [1] E. C. Tseng, M. Y. Cheng, and M. C. Tsai, “Design of a PI-type torque observer for detecting abnormal load,” in Procs. of International Mechatronics and Technology Conference 1998, Hsinchu, Taiwan, Nov. 30-Dec. 2, 1998, pp. 147-152.
    [2] M. C. Tsai, E. C. Tseng, and M. Y. Cheng, “Design of a torque observer for detecting abnormal load,” Control Engineering Practice, vol. 8, pp. 259-269, Mar. 2000.
    [3] 劉叡明, 伺服馬達低轉速控制改善之研究, 碩士論文, 國立成功大學電機工程學系, 九十七學年度.
    [4] 吳仁哲, 伺服控制系統之摩擦力與干擾補償研究, 碩士論文, 國立成功大學電機工程學系, 九十八學年度.
    [5] T. Dumitriu, “Devlopment of a Simulink® toolbox for friction design and compensation, ” Annals of Dunarea de Jos, pp. 5-10, Jun. 2005.
    [6] Armstrong-Helouvry, B. P. Dupont and C. Canudas de Wit, “A survey of models, analysis tools, and compensation methods for the control of machines with friction,” Automatica, vol. 30, no. 7, pp. 1083-1138, Jul. 1994.
    [7] M. Gafvert, Comparison of two dynamic friction models, Master’s thesis, LUTFD2/TFRT-5561-SE, Lund University., Lund, Sweden, 1996.
    [8] R. Kelly and J. Liamas, “Determination of Viscous and Coulomb friction by using velocity responses to torque ramp inputs,” in Procs. of International Conference on Robotics and Automation 1999, Detroit,MI, May 10-15, 1999, pp. 1740-1745.
    [9] K. J. Åström and C. Canudas de Wit, “Revisiting the LuGre friction model,” IEEE Control System Magazine, vol. 28, pp. 101-114, Dec. 2008.
    [10] G. Zames, “Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms and approximate inverses, ” IEEE Transactions of Automatic Control, vol. AC-26, pp. 301-320, Apr. 1981.
    [11] T. Başar, P. Bernhard, H∞ Optimal Control and Related Minimax Design Problems: a Dynamic Game Approach, Boston: Birkhauser, 1995.
    [12] B. A. Francis, A Course in H∞ Control Theory, New York: Springer-Verlag, 1986.
    [13] J. C. Doyle, K. Glover, P. P. Khargonekar, B. A. Francis, “State-space solutions to standard H2 and H∞ control problems,” IEEE Trans, Autom. Control, vol. AC-34, no. 8, pp. 831-847, Aug. 1989.
    [14] 楊憲東, 葉芳栢, 線性與非線性H∞控制理論-Game Theoretic Approach, 全華科技圖書有限公司, 1997.
    [15] K. Zhou and J. C. Doyle, Essentials of Robust Control, Upper Saddle River, New Jersey: Prentice Hall, 1998.
    [16] R. Liu, X. Wu and Y. Zhang, “Application of H∞ control theory in active power filter,” in Procs. of International Power Electronics Conference 2007, Meritus Mandarin Singapore, Singapore, Dec. 3-6, 2007, pp. 1033-1036.
    [17] D. J. N. Limebeer, Linear Robust Control, Upper Saddle River, New Jersey: Prentice Hall, 1995.
    [18] R. A. Hyde, H∞ Aerospace Control Design, New York: Springer-Verlag, 1995.
    [19] 劉用志, 應用H∞控制理論設計低穩定中斷飛機之縱向控制系統, 碩士論文, 中正理工學院兵器系統工程研究所, 七十九學年度.
    [20] 楊憲東, H∞控制理論及應用, 國立成功大學航空太空研究所, 2003.

    下載圖示 校內:2012-08-31公開
    校外:2012-08-31公開
    QR CODE