| 研究生: |
蔡念庭 Tsai, Nien-Ting |
|---|---|
| 論文名稱: |
聚甲基丙烯酸甲酯奈米塑膠在水中的光化學宿命 The Photochemical Fate of Poly (Methyl Methacrylate) Nanoplastics in Water |
| 指導教授: |
侯文哲
Hou, Wen-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 光降解 、模擬太陽光 、奈米塑膠 、聚甲基丙烯酸甲酯(PMMA) |
| 外文關鍵詞: | photodegradation, simulated sunlight, nanoplastics, polymethyl methacrylate (PMMA) |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
塑膠材料廣泛應用於工業和社會。然而,截至 2017 年的塑膠垃圾統計數據顯示,全球累積的 63 億噸塑料垃圾中,約有79%最終進入垃圾掩埋場或環境。因此,塑膠大量存在於環境中。這也代表塑膠在環境中的宿命及影響逐漸被世人重視。近年來,在環境樣本中發現了微塑膠(MPs)和奈米塑膠(NPs),進一步強調了了解它們在全球的命運和影響的重要性。
本研究以聚甲基丙烯酸甲酯(PMMA)作為實驗對象,PMMA又稱為壓克力,是一種常見的塑膠,但目前文獻對於PMMA NP和MP在太陽光照下的反應宿命了解幾乎是空白,嚴重限制了我們評估及模擬此類塑膠微粒的長期環境流布。研究對懸浮於水中之PMMA NPs進行了為期 2 個月的連續模擬太陽光照射實驗,相當於6個月天然太陽光照射,以研究這種相對穩定的塑膠是否會發生物理及化學變化。研究結果顯示,在長時間1,515 小時的模擬太陽光下照射後,NP 的初始粒徑從大約 100 nm 減小到 90 nm,且顆粒有輕微聚集的情形發生,此外,PMMA NP在太陽光照下明顯釋出溶解性有機碳,其濃度與未照光樣本相比,顯著增加了 56 mg C/L 左右,而溶解性無機碳則未明顯增加,代表太陽光照射對於PMMA NPs礦化作用不明顯,進一步以有機溶劑催取溶解性產物後以氣相層析質譜儀(GC-MS)分析,發現照光樣品在萃取完經過定性分析後觀察到新的產物。紅外光光譜(FTIR)及X光光電子光譜(XPS)分析照光後之PMMA NP固體樣本並未發現較明顯的變化,然以熱裂解GC-MS (Py-GC-MS)分析 PMMA NPs 的質量,在照光1515小時後,質量損失了57.94 mg C/L,約佔總PMMA NPs碳質量的24.5%。且在熱解產物中觀察到明顯的變化。因此,本研究建立了探討塑膠奈米微粒的環境光宿命研究及分析方法,結果顯示太陽光照射對於 PMMA NPs的環境宿命有重要的影響,可預期光老化後的PMMA NP和產物有與初始PMMA NP呈現不同的環境傳輸和生物毒性,未來研究可進一步分析,與探討其他類型的奈米塑膠顆粒。
Plastic materials are widely used in industries and the society. As of 2017, the global plastic waste statistics show that around 79% of the 6.3 billion tons of plastic waste accumulated globally, ending up in landfills or the natural environment. As a result, plastics exist in significant quantities in the environment. The world increasingly recognizes the importance of examining the fate and impacts of plastics in the environment. In recent years, microplastics (MPs) and nanoplastics (NPs) have been identified in environmental samples as a result of weathering and fragmentation of bulk plastics, further highlighting the importance toward understanding the fate and ecological effects of MPs and NPs.
Polymethyl methacrylate (PMMA), also known as acrylic, is a type of commodity plastics. PMMA NPs were chosen for this study due to the confirmed presence of PMMA MPs in the environment. Furthermore, it has been noted that PMMA MPs can degrade into PMMA NPs through weathering processes. Additionally, the study of phototransformation of PMMA NPs under natural sunlight condition is almost non-existent to our knowledge. This significantly limits our ability to evaluate and model the environmental exposure and fate of this importantly class of plastic. We conducted a 2-month continuous simulated solar irradiation experiment, equivalent to 6 months under natural sunlight, on the aqueous PMMA NPs to investigate whether this stable plastic can undergo physicochemical alterations. The findings revealed that the initial primary particle size of PMMA NPs decreased from approximately ~100 nm to 90 nm with increasing particle aggregation after prolonged exposure to solar light for 1515 h. The concentration of dissolved organic carbon (DOC) notably increased by approximately 56 mg C/L compared to the dark control sample, while the dissolved inorganic carbon (DIC) concentration did not increased, indicating that photomineralization of PMMA NPs was negligible. The GC-MS analysis of the leached organic photoproducts showed significant product release from the irradiated sample compared to the dark control samples. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) results of the irradiated solid samples revealed little changes. Further analysis with pyrolysis-GC-MS (py-GC-MS) indicated the mass loss of parent PMMA NPs by 57.94 mg/L after solar light exposure for 1515 hours. The changes in the PMMA NPs pyrolyzate characteristics were notable particularly in the pyrolysis products. This study highlights the importance of solar irradiation in altering the physicochemical characteristics of this important, yet less well studied PMMA NPs. This work established a suite of analytical methods on characterizing the photochemically aged PMMA NPs that could be also be applicable to other types of NPs. The photochemically aged PMMA NPs and products formed are expected to exhibit transport and toxic effects distinct from parent NPs, a research area that merits further investigation.
1. Swan, S. H. et al. Decrease in Anogenital Distance among Male Infants with Prenatal Phthalate Exposure. Environmental Health Perspectives 113, 1056–1061 (2005).
2. Vethaak, A. D. & Leslie, H. A. Plastic Debris Is a Human Health Issue. Environ. Sci. Technol. 50, 6825–6826 (2016).
3. Gallagher, A., Rees, A., Rowe, R., Stevens, J. & Wright, P. Microplastics in the Solent estuarine complex, UK: An initial assessment. Marine Pollution Bulletin 102, 243–249 (2016).
4. Ter Halle, A. et al. Nanoplastic in the North Atlantic Subtropical Gyre. Environ. Sci. Technol. 51, 13689–13697 (2017).
5. Kirstein, I. V. et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Marine Environmental Research 120, 1–8 (2016).
6. Chen, Q., Allgeier, A., Yin, D. & Hollert, H. Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environment International 130, 104938 (2019).
7. Frias, J. P. G. L., Sobral, P. & Ferreira, A. M. Organic pollutants in microplastics from two beaches of the Portuguese coast. Marine Pollution Bulletin 60, 1988–1992 (2010).
8. Lambert, S. & Wagner, M. Formation of microscopic particles during the degradation of different polymers. Chemosphere 161, 510–517 (2016).
9. Gigault, J., Pedrono, B., Maxit, B. & Halle, A. T. Marine plastic litter: the unanalyzed nano-fraction. Environ. Sci.: Nano 3, 346–350 (2016).
10. Tong, H. et al. Micro- and nanoplastics released from biodegradable and conventional plastics during degradation: Formation, aging factors, and toxicity. Science of The Total Environment 833, 155275 (2022).
11. Holzer, M., Mitrano, D. M., Carles, L., Wagner, B. & Tlili, A. Important ecological processes are affected by the accumulation and trophic transfer of nanoplastics in a freshwater periphyton-grazer food chain. Environ. Sci.: Nano 9, 2990–3003 (2022).
12. Culligan, N., Liu, K., Ribble, K., Ryu, J. & Dietz, M. Sedimentary records of microplastic pollution from coastal Louisiana and their environmental implications. J Coast Conserv 26, 1 (2021).
13. Ballent, A., Corcoran, P. L., Madden, O., Helm, P. A. & Longstaffe, F. J. Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Marine Pollution Bulletin 110, 383–395 (2016).
14. Liu, Z. & Nowack, B. Probabilistic material flow analysis and emissions modeling for five commodity plastics (PUR, ABS, PA, PC, and PMMA) as macroplastics and microplastics✰. Resources, Conservation and Recycling 179, 106071 (2022).
15. Hornak, L. Polymers for lightwave and integrated optics: technology and applications. Marcel Dekker, Inc, 270 Madison Ave, New York, New York 10016, USA, 1992. 768 (1992).
16. Teoh, E. L. & Chow, W. S. Transparency, ultraviolet transmittance, and miscibility of poly (lactic acid)/poly (methyl methacrylate) blends. Journal of Elastomers & Plastics 50, 596–610 (2018).
17. Chaplin, R. P. S., Lee, A. J. C., Hooper, R. M. & Clarke, M. The mechanical properties of recovered PMMA bone cement: a preliminary study. Journal of Materials Science: Materials in Medicine 17, 1433–1448 (2006).
18. Chen, C. et al. Impacts of microplastics on organotins’ photodegradation in aquatic environments. Environmental Pollution 267, 115686 (2020).
19. García-Gil, Á. et al. Weathering of plastic SODIS containers and the impact of ageing on their lifetime and disinfection efficacy. Chemical Engineering Journal 435, 134881 (2022).
20. Meng, J. & Wang, Y. Effect of Xenon Arc Lamp Irradiation on Properties of Polymethyl Methacrylate for Aviation. Open Journal of Organic Polymer Materials 05, 23 (2015).
21. Colom, X., Garcı́a, T., Suñol, J. J., Saurina, J. & Carrasco, F. Properties of PMMA artificially aged. Journal of Non-Crystalline Solids 287, 308–312 (2001).
22. Bergmann, M. et al. A global plastic treaty must cap production. Science 376, 469–470 (2022).
23. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Science Advances 3, e1700782 (2017).
24. Peng, Y., Wu, P., Schartup, A. T. & Zhang, Y. Plastic waste release caused by COVID-19 and its fate in the global ocean. Proceedings of the National Academy of Sciences 118, e2111530118 (2021).
25. Basurko, O. C. et al. The coastal waters of the south-east Bay of Biscay a dead-end for neustonic plastics. Marine Pollution Bulletin 181, 113881 (2022).
26. Akarsu, C., Sönmez, V. Z., Altay, M. C., Pehlivan, T. & Sivri, N. The spatial and temporal changes of beach litter on Istanbul (Turkey) beaches as measured by the clean-coast index. Marine Pollution Bulletin 176, 113407 (2022).
27. Fendall, L. S. & Sewell, M. A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Marine Pollution Bulletin 58, 1225–1228 (2009).
28. Moore, C. J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research 108, 131–139 (2008).
29. Betts, K. Why small plastic particles may pose a big problem in the oceans. Environ. Sci. Technol. 42, 8995–8995 (2008).
30. Browne, M. A., Galloway, T. & Thompson, R. Microplastic—an emerging contaminant of potential concern? Integrated Environmental Assessment and Management 3, 559–561 (2007).
31. Claessens, M., Meester, S. D., Landuyt, L. V., Clerck, K. D. & Janssen, C. R. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Marine Pollution Bulletin 62, 2199–2204 (2011).
32. Browne, M. A., Galloway, T. S. & Thompson, R. C. Spatial Patterns of Plastic Debris along Estuarine Shorelines. Environ. Sci. Technol. 44, 3404–3409 (2010).
33. Andrady, A. L. Microplastics in the marine environment. Marine pollution bulletin 62, 1596–1605 (2011).
34. Mitrano, D. M., Wick, P. & Nowack, B. Placing nanoplastics in the context of global plastic pollution. Nat. Nanotechnol. 16, 491–500 (2021).
35. Cózar, A. et al. Plastic debris in the open ocean. Proceedings of the National Academy of Sciences 111, 10239–10244 (2014).
36. Ter Halle, A. et al. Understanding the fragmentation pattern of marine plastic debris. Environmental science & technology 50, 5668–5675 (2016).
37. Cole, M. & Galloway, T. S. Ingestion of nanoplastics and microplastics by Pacific oyster larvae. Environmental science & technology 49, 14625–14632 (2015).
38. da Costa, J. P., Santos, P. S., Duarte, A. C. & Rocha-Santos, T. (Nano) plastics in the environment–sources, fates and effects. Science of the total environment 566, 15–26 (2016).
39. Crawford, C. B. & Quinn, B. Physiochemical properties and degradation. Microplastic pollutants vol. 4 57–100 (Elsevier Amsterdam, The Netherlands, 2017).
40. Cole, M., Lindeque, P., Fileman, E., Halsband, C. & Galloway, T. S. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environmental science & technology 49, 1130–1137 (2015).
41. Rillig, M. C. Microplastic in Terrestrial Ecosystems and the Soil? Environ. Sci. Technol. 46, 6453–6454 (2012).
42. Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: a review. Marine pollution bulletin 62, 2588–2597 (2011).
43. van Wezel, A., Caris, I. & Kools, S. A. E. Release of primary microplastics from consumer products to wastewater in the Netherlands. Environmental Toxicology and Chemistry 35, 1627–1631 (2016).
44. Lambert, S. & Wagner, M. Microplastics are contaminants of emerging concern in freshwater environments: an overview. (Springer International Publishing, 2018).
45. Dang, T. C. H. et al. Plastic degradation by thermophilic Bacillus sp. BCBT21 isolated from composting agricultural residual in Vietnam. Adv. Nat. Sci: Nanosci. Nanotechnol. 9, 015014 (2018).
46. González-Pleiter, M. et al. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ. Sci.: Nano 6, 1382–1392 (2019).
47. Liao, J. & Chen, Q. Biodegradable plastics in the air and soil environment: Low degradation rate and high microplastics formation. Journal of Hazardous Materials 418, 126329 (2021).
48. Mark, H. F., Bikales, N. M., Overberger, C. G. & Menges, G. Encyclopedia of polymer science and engineering. vol. 4. Wiley-Interscience, 605 Third Avenue, New York, New York 10158, USA, 1986. (1986).
49. Singh, B. & Sharma, N. Mechanistic implications of plastic degradation. Polymer Degradation and Stability 93, 561–584 (2008).
50. Lucas, N. et al. Polymer biodegradation: Mechanisms and estimation techniques – A review. Chemosphere 73, 429–442 (2008).
51. An, L. et al. Sources of Microplastic in the Environment. in Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenges (eds. He, D. & Luo, Y.) 143–159 (Springer International Publishing, 2020). doi:10.1007/698_2020_449.
52. Browne, M. A. et al. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environ. Sci. Technol. 45, 9175–9179 (2011).
53. Lusher, A. L., McHugh, M. & Thompson, R. C. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine Pollution Bulletin 67, 94–99 (2013).
54. Samandra, S. et al. Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia. Science of The Total Environment 802, 149727 (2022).
55. Yonkos, L. T., Friedel, E. A., Perez-Reyes, A. C., Ghosal, S. & Arthur, C. D. Microplastics in Four Estuarine Rivers in the Chesapeake Bay, U.S.A. Environ. Sci. Technol. 48, 14195–14202 (2014).
56. Pabortsava, K. & Lampitt, R. S. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nat Commun 11, 4073 (2020).
57. da Costa, I. D., Costa, L. L., da Silva Oliveira, A., de Carvalho, C. E. V. & Zalmon, I. R. Microplastics in fishes in amazon riverine beaches: Influence of feeding mode and distance to urban settlements. Science of The Total Environment 863, 160934 (2023).
58. Hayes, A., Kirkbride, K. P. & Leterme, S. C. Variation in polymer types and abundance of microplastics from two rivers and beaches in Adelaide, South Australia. Marine Pollution Bulletin 172, 112842 (2021).
59. Cai, H. et al. Analysis of environmental nanoplastics: Progress and challenges. Chemical Engineering Journal 410, 128208 (2021).
60. Ekvall, M. T. et al. Nanoplastics formed during the mechanical breakdown of daily-use polystyrene products. Nanoscale Adv. 1, 1055–1061 (2019).
61. El Hadri, H., Gigault, J., Maxit, B., Grassl, B. & Reynaud, S. Nanoplastic from mechanically degraded primary and secondary microplastics for environmental assessments. NanoImpact 17, 100206 (2020).
62. Annenkov, V. V., Danilovtseva, E. N., Zelinskiy, S. N. & Pal’shin, V. A. Submicro- and nanoplastics: How much can be expected in water bodies? Environmental Pollution 278, 116910 (2021).
63. Dawson, A. L. et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat Commun 9, 1001 (2018).
64. Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C. & Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Science of The Total Environment 702, 134455 (2020).
65. Kelly, F. J. & Fussell, J. C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment 60, 504–526 (2012).
66. Geiser, M. et al. Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells. Environmental Health Perspectives 113, 1555–1560 (2005).
67. Yacobi, N. R. et al. Polystyrene nanoparticle trafficking across alveolar epithelium. Nanomedicine: Nanotechnology, Biology and Medicine 4, 139–145 (2008).
68. Chiu, H.-W. et al. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale 7, 736–746 (2015).
69. Bergman, Å. et al. State of the science of endocrine disrupting chemicals 2012. (World Health Organization, 2013).
70. Coronavirus pandemic creates new application for PMMA sheet market. ICIS Explore https://www.icis.com/explore/resources/news/2020/05/08/10505498/coronavirus-pandemic-creates-new-application-for-pmma-sheet-market.
71. De Tommaso, J. & Dubois, J.-L. Risk Analysis on PMMA Recycling Economics. Polymers 13, 2724 (2021).
72. Harper, C. A. & Petrie, E. M. Plastics materials and processes: a concise encyclopedia. (John Wiley & Sons, 2003).
73. Van Krevelen, D. W. & Te Nijenhuis, K. Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. (Elsevier, 2009).
74. Tilley, J. P. Versatility of Acrylics, 1934-1980. Special Publications of the Royal Society of Chemistry 141, 95–104 (1994).
75. Arrachart, G., Karatchevtseva, I., Heinemann, A., J. Cassidy, D. & Triani, G. Synthesis and characterisation of nanocomposite materials prepared by dispersion of functional TiO 2 nanoparticles in PMMA matrix. Journal of Materials Chemistry 21, 13040–13046 (2011).
76. Laube, T., Apel, H. & Koch, H.-R. Ultraviolet radiation absorption of intraocular lenses. Ophthalmology 111, 880–885 (2004).
77. Zhang, L. et al. Surface modification of polymethyl methacrylate intraocular lenses by plasma for improvement of antithrombogenicity and transmittance. Applied Surface Science 255, 6840–6845 (2009).
78. Ali, U., Karim, K. J. Bt. A. & Buang, N. A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polymer Reviews 55, 678–705 (2015).
79. Feuser, P. E. et al. Synthesis and Characterization of Poly(Methyl Methacrylate) PMMA and Evaluation of Cytotoxicity for Biomedical Application. Macromolecular Symposia 343, 65–69 (2014).
80. Haboush, E. J. A new operation for arthroplasty of the hip based on biomechanics, photoelasticity, fast-setting dental acrylic and other considerations. Bull Hosp Dis Orthop Inst 14, 242–277 (1953).
81. Charnley, J. The bonding of prostheses to bone by cement. The Journal of bone and joint surgery. British volume 46, 518–529 (1964).
82. Jakubowsky, M., Werder, J., Rytka, C., Kristiansen, P. M. & Neyer, A. Design, manufacturing and experimental validation of a bonded dual-component microstructured system for vertical light emission. Microsyst Technol 26, 2087–2093 (2020).
83. Tan, D. T., Pullum, K. W. & Buckley, R. J. Medical applications of scleral contact lenses: 1. A retrospective analysis of 343 cases. Cornea 14, 121–129 (1995).
84. Yan, Q., Perdue, N. & Sage, E. H. Differential responses of human lens epithelial cells to intraocular lenses in vitro: hydrophobic acrylic versus PMMA or silicone discs. Graefe’s Archive for Clinical and Experimental Ophthalmology 243, 1253–1262 (2005).
85. Deb, S. Polymers in dentistry. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 212, 453–464 (1998).
86. Zafar, M. S. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers 12, 2299 (2020).
87. Mendes, A. N. et al. Preparation and cytotoxicity of poly (methyl methacrylate) nanoparticles for drug encapsulation. in Macromolecular Symposia vol. 319 34–40 (Wiley Online Library, 2012).
88. Market, F. T. Trinseo (TSE), Arkema’s PMMA Acquisition: A Lot Of Investor Value | Seeking Alpha. https://seekingalpha.com/article/4473189-trinseo-arkema-pmma-acquisition-lot-of-investor-value, https://seekingalpha.com/article/4473189-trinseo-arkema-pmma-acquisition-lot-of-investor-value (2021).
89. Thomas, M. & Rajiv, S. Porous membrane of polyindole and polymeric ionic liquid incorporated PMMA for efficient quasi-solid state dye sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry 394, 112464 (2020).
90. Kim, D.-W., Jeong, Y.-B., Kim, S.-H., Lee, D.-Y. & Song, J.-S. Photovoltaic performance of dye-sensitized solar cell assembled with gel polymer electrolyte. Journal of Power Sources 149, 112–116 (2005).
91. Kuppu, S. V., Jeyaraman, A. R., Guruviah, P. K. & Thambusamy, S. Preparation and characterizations of PMMA-PVDF based polymer composite electrolyte materials for dye sensitized solar cell. Current Applied Physics 18, 619–625 (2018).
92. Lu, H. et al. Heating/ethanol-response of poly methyl methacrylate (PMMA) with gradient pre-deformation and potential temperature sensor and anti-counterfeit applications. Smart materials and structures 23, 067002 (2014).
93. Capan, R., Ray, A. K., Tanrisever, T. & Hassan, A. K. Spun thin films of poly(methyl methacrylate) polymer for benzene sensing. Smart Mater. Struct. 14, N11 (2005).
94. Yoon, H., Xie, J., Abraham, J. K., Varadan, V. K. & Ruffin, P. B. Passive wireless sensors using electrical transition of carbon nanotube junctions in polymer matrix. Smart Mater. Struct. 15, S14 (2005).
95. Mishra, S. K., Tripathi, S. N., Choudhary, V. & Gupta, B. D. SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sensors and Actuators B: Chemical 199, 190–200 (2014).
96. Gillani, R., Ercan, B., Qiao, A. & Webster, T. J. Nanofunctionalized zirconia and barium sulfate particles as bone cement additives. International journal of nanomedicine 1–11 (2010).
97. Khandaker, M., Vaughan, M. B., Morris, T. L., White, J. J. & Meng, Z. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly (methyl methacrylate) cement. International Journal of Nanomedicine 9, 2699 (2014).
98. Perni, S. et al. Antimicrobial activity of bone cements embedded with organic nanoparticles. International journal of nanomedicine 10, 6317 (2015).
99. Wei, D., Jung, J., Yang, H., Stout, D. A. & Yang, L. Nanotechnology Treatment Options for Osteoporosis and Its Corresponding Consequences. Curr Osteoporos Rep 14, 239–247 (2016).
100. Mahmud, M. A. P. & Farjana, S. H. Comparative Eco-Profiles of Polyethylene Terephthalate (PET) and Polymethyl Methacrylate (PMMA) Using Life Cycle Assessment. J Polym Environ 29, 418–428 (2021).
101. Liu, C. et al. Effect of the nanosilica content in the shell of coextruded wood-plastic composites to enhance the ultraviolet aging resistance. Polymers for Advanced Technologies 30, 162–169 (2019).
102. Luna, C. B. B., Siqueira, D. D., Araújo, E. M. & Fook, M. V. L. Photodegradation of polystyrene/rubber waste blends compatibilized with SBS copolymer. Journal of Elastomers & Plastics 52, 356–379 (2020).
103. Yousif, E. & Haddad, R. Photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus 2, 398 (2013).
104. Carlsson, D. J., Garton, A. & Wiles, D. M. Initiation of Polypropylene Photooxidation. 2. Potential Processes and Their Relevance to Stability. Macromolecules 9, 695–701 (1976).
105. Lee, Q. Y. & Li, H. Photocatalytic Degradation of Plastic Waste: A Mini Review. Micromachines 12, 907 (2021).
106. Singh, B. & Sharma, N. Mechanistic implications of plastic degradation. Polymer Degradation and Stability 93, 561–584 (2008).
107. Rånby, B. Photodegradation and photo-oxidation of synthetic polymers. Journal of Analytical and Applied Pyrolysis 15, 237–247 (1989).
108. RĂDVAN, R. & Cortea, I. M. Influence of wavelength specificity on the photodegradation effects of polymeric materials used in cultural heritage conservation. Journal of Optoelectronics and Advanced Materials 18, 330–337 (2016).
109. Kim, I.-S., Cho, H., Sohn, K.-S., Kim, K. & Kim, S. A study on the severe crazing phenomenon of the PMMA canopy under prolonged exposure to tropical climates. Engineering Failure Analysis 129, 105719 (2021).
110. Torikai, A., Ohno, M. & Fueki, K. Photodegradation of poly(methyl methacrylate) by monochromatic light: Quantum yield, effect of wavelengths, and light intensity. Journal of Applied Polymer Science 41, 1023–1032 (1990).
111. Kaczmarek, H., Kamińska, A. & van Herk, A. Photooxidative degradation of poly(alkyl methacrylate)s. European Polymer Journal 36, 767–777 (2000).
112. Mitsuoka, T., Torikai, A. & Fueki, K. Wavelength sensitivity of the photodegradation of poly(methyl methacrylate). Journal of Applied Polymer Science 47, 1027–1032 (1993).
113. Zhu, K. et al. Formation of Environmentally Persistent Free Radicals on Microplastics under Light Irradiation. Environ. Sci. Technol. 53, 8177–8186 (2019).
114. Li, Y. et al. Adsorption behaviour of microplastics on the heavy metal Cr(VI) before and after ageing. Chemosphere 302, 134865 (2022).
115. Zhu, K. et al. Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species. Water Research 173, 115564 (2020).
116. Ainali, N. M., Bikiaris, D. N. & Lambropoulou, D. A. Aging effects on low- and high-density polyethylene, polypropylene and polystyrene under UV irradiation: An insight into decomposition mechanism by Py-GC/MS for microplastic analysis. Journal of Analytical and Applied Pyrolysis 158, 105207 (2021).
117. Wu, X. et al. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater. Water Research 188, 116456 (2021).
118. Lee, Y. K., Murphy, K. R. & Hur, J. Fluorescence Signatures of Dissolved Organic Matter Leached from Microplastics: Polymers and Additives. Environ. Sci. Technol. 54, 11905–11914 (2020).
119. Zhu, L., Zhao, S., Bittar, T. B., Stubbins, A. & Li, D. Photochemical dissolution of buoyant microplastics to dissolved organic carbon: Rates and microbial impacts. Journal of Hazardous Materials 383, 121065 (2020).
120. Wu, X. et al. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater. Water Research 188, 116456 (2021).
121. Ouyang, Z. et al. The photo-aging of polyvinyl chloride microplastics under different UV irradiations. Gondwana Research 108, 72–80 (2022).
122. Zhu, K. et al. Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species. Water Research 173, 115564 (2020).
123. Zhu, K. et al. Formation of Environmentally Persistent Free Radicals on Microplastics under Light Irradiation. Environ. Sci. Technol. 53, 8177–8186 (2019).
124. Shi, Y. et al. Insight into chain scission and release profiles from photodegradation of polycarbonate microplastics. Water Research 195, 116980 (2021).
125. Wu, X. et al. Size-dependent long-term weathering converting floating polypropylene macro- and microplastics into nanoplastics in coastal seawater environments. Water Research 242, 120165 (2023).
126. Wang, Q. et al. The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation. Journal of Environmental Sciences 87, 272–280 (2020).
127. Xu, Z., Ye, Y., Tang, G., Liu, Y. & Yang, R. Effect of alkylated surface modified silica nanoparticles on degradation products of PP during photooxidation aging: A Py-GC-MS analysis. Journal of Analytical and Applied Pyrolysis 169, 105862 (2023).
128. Royer, S.-J., Ferrón, S., Wilson, S. T. & Karl, D. M. Production of methane and ethylene from plastic in the environment. PLOS ONE 13, e0200574 (2018).
129. Ward, C. P., Armstrong, C. J., Walsh, A. N., Jackson, J. H. & Reddy, C. M. Sunlight Converts Polystyrene to Carbon Dioxide and Dissolved Organic Carbon. Environ. Sci. Technol. Lett. 6, 669–674 (2019).
130. Bianco, A., Sordello, F., Ehn, M., Vione, D. & Passananti, M. Degradation of nanoplastics in the environment: Reactivity and impact on atmospheric and surface waters. Science of The Total Environment 742, 140413 (2020).
131. Hou, W.-C., He, C.-J., Wang, Y.-S., Wang, D. K. & Zepp, R. G. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon. Environ. Sci. Technol. 50, 3494–3502 (2016).
132. Papadopulos, F. et al. Common tasks in microscopic and ultrastructural image analysis using ImageJ. Ultrastruct Pathol 31, 401–407 (2007).
133. Rong, M. Z., Zhang, M. Q., Wang, H. B. & Zeng, H. M. Surface modification of magnetic metal nanoparticles through irradiation graft polymerization. Applied Surface Science 200, 76–93 (2002).
134. Gröning, P., Küttel, O. M., Collaud-Coen, M., Dietler, G. & Schlapbach, L. Interaction of low-energy ions (< 10 eV) with polymethylmethacrylate during plasma treatment. Applied Surface Science 89, 83–91 (1995).
135. Raptis, I. et al. Enhancement of sensing properties of thin poly (methyl methacrylate) films by VUV modification. J. Laser Micro Nanoeng 2, 200–205 (2007).
136. Hou, W.-C., He, C.-J., Wang, Y.-S., Wang, D. K. & Zepp, R. G. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon. Environ. Sci. Technol. 50, 3494–3502 (2016).
137. La Nasa, J. et al. Synthetic materials in art: a new comprehensive approach for the characterization of multi-material artworks by analytical pyrolysis. Herit Sci 7, 8 (2019).
138. Qualitative and quantitative analysis of mixtures of microplastics in the presence of calcium carbonate by pyrolysis-GC/MS. Journal of Analytical and Applied Pyrolysis 157, 105188 (2021).
139. Nasa, J. L. et al. Plastics in Heritage Science: Analytical Pyrolysis Techniques Applied to Objects of Design. Molecules 25, 1705 (2020).
140. Łojewski, T. et al. FTIR and UV/vis as methods for evaluation of oxidative degradation of model paper: DFT approach for carbonyl vibrations. Carbohydrate Polymers 82, 370–375 (2010).
141. Razali, R. A., Lokanathan, Y., Chowdhury, S. R., Saim, A. & Idrus, R. H. Physicochemical and structural characterization of surface modified electrospun PMMA nanofibre. Sains Malays 47, 1787–1794 (2018).
142. Smith, B. Infrared Spectroscopy of Polymers XIII: Polyurethanes. Spectroscopy 38, 14–16 (2023).
143. Pappas, C. S. et al. Determination of the degree of esterification of pectinates with decyl and benzyl ester groups by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and curve-fitting deconvolution method. Carbohydrate Polymers 56, 465–469 (2004).
144. Rolere, S., Liengprayoon, S., Vaysse, L., Sainte-Beuve, J. & Bonfils, F. Investigating natural rubber composition with Fourier Transform Infrared (FT-IR) spectroscopy: A rapid and non-destructive method to determine both protein and lipid contents simultaneously. Polymer Testing 43, 83–93 (2015).
145. Zhang, J. & Kamdem, D. P. FTIR Characterization of Copper Ethanolamine—Wood Interaction for Wood Preservation. 54, 119–122 (2000).
校內:2028-08-22公開