| 研究生: |
吳匯儀 Wu, Hui-I |
|---|---|
| 論文名稱: |
梳型低溫陶瓷共燒微波濾波器傳輸零點的研究 Investigation on Transmission Zero of Combline-LTCC Filter |
| 指導教授: |
李文熙
Lee, Wen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 梳型濾波器 、低溫共燒陶瓷 、傳輸零點 |
| 外文關鍵詞: | transmission zero, low temperature cofire ceramic, combline filter |
| 相關次數: | 點閱:68 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今的通訊系統中,例如:WLan和藍芽系統,不僅需要抑制倍頻效應,亦需要抑制雜訊(ex: image frequency),所以本論文主要設計與分析用於通訊系統濾波器之傳輸零點,以有效滿足以上的需求。
文中首先描述以堆疊的方式設計需要大電容之規格的濾波器,並以此方式設計具有電容性耦合與電感性耦合的濾波器以抑制雜訊,並改變其共振器的結構使濾波器在倍頻附近產生一個傳輸零點,以抑制其倍頻效應,並做了饋入點對於傳輸零點漂移的分析,期望能夠讓此結構的濾波器的設計更系統化。
由實測結果發現,電容性耦合結構通帶介入損失約為-1.6dB,衰減量在2.1GHz約為37dB,在5GHz大於40dB;電感性耦合結構通帶介入損失約為-2.2dB,衰減量在2.4GHz約為40dB,在5GHz附近大於60dB。由量測結果證實這些設計均能抑制雜訊和倍頻效應以符合通訊系統的要求。
In Bluetooth and Wireless lan system, their specifications require suppressing not only spurious response but also noise owing to local oscillator. In this study, we focus on characteristics of transmission zeros of microwave passive filters.
In this study, because we need large capacitances to satisfy the specifications of widerbandwidth, and realize those capacitances all in parallel. And by this concept, we design and analyze filters which can suppress noise, one is capacitive coupling and another is magnetic coupling. And, in above two structures, there are transmission zeros which can suppress spurious response, and we have a systematic design flow to explain the phenomenon. At last, we analyze the characteristics of transmission zeros with different
feed point.
By measured results of the capacitive coupling structure is as follow, insertion loss of passband is about -1.5dB and attenuation is about 37dB at 2.1GHz and is larger than 40dB at about 5GHz. And the results of magnetic structure is as follow, insertion loss of passband is about -2.2dB and attenuation is about 40dB at 3GHz and is larger than 60dB at about 5GHz. The results demonstrated that these structures successfully can suppress noise and spurious response.
[1] D. M. Pozar, Microwave Engineering, 2nd ed., John Wiley, New York, Chap. 5,1998.
[2] Hong, J.S.; Lancaster, M.J. ”Recent advances in microstrip filters for communications and other applications,” Advances in Passive Microwave
Components (Digest No: 1997/154), IEE Colloquium, pp.2/1 - 2/6, May 1997
[3] Levy, R.; Snyder, R.V.; Matthaei, G., “Design of microwave filters”Microwave Theory and Techniques, IEEE Transactions on vol.50, Issue 3, pp.783–793, March 2002
[4] Eric Shih, Jen-Tsai Kuo, “A new compact microstrip stacked-SIR bandpass filter with
transmission zeros,” IEEE MTT-S Digest, pp.1077-1080, 2003
[5] Marco Morelli, Ian Hunter, Richard Parry, and Vasil Postoyalko, ” Microstrip stepped
impedance resonator bandpass filter with an extended optimal rejection bandwidth,”
Trans. Microwave Theory Tech., vol. 50, pp. 1657-1664, 2002
[6] Chih-Ming Tsai, IEEE, Sheng-Yuan Lee, and Hong-Ming Lee, “Transmission-Line Filters With Capacitively Loaded Coupled Lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 5, may 2003
[7] G. Matthaei, L. Young and E. M. T. Jones, “Microwave filters, impedance-matching
networks, and coupling structures” Artech House, pp.497-506 (1985)
[8] R. A. Speciale, “Fundamental even- and odd-mode waves for nonsymmetrical coupled lines in non-homogeneous media,” in 1974 IEEE MTT Int. Microwave S’ymp. Digest Tech. Paper, pp.156-158, June 1974,
[9] E. G. Crmtal, “Coupled-transmission-line direct ional couplers with coupled lines of
unequal characteristic impedance,” IEEE Trans. Microwave Theory Tech., vol.MTT-14, pp. 337-346, July 1966.
[10] C. B. Sharpe, “An equivalence principle for nonuniform transmission line directional couplers,” IEEE Trans. Microwave Theory Tech., vol. MTT-15, pp.
393-405, July 1967.
[11] H, Amemiya, “Time domain analysis of multiple parallel transmission lines.” RCA
Rev., vol. 28, pp.241–276, June 1967.
[12] M. K. Krage, G. I. Haddad, “Characteristics of coupled microstrip transmission lines-I: Coupled-mode Formulation of inhomogeneous lines,” IEEE Trans. Microwave Theory and Techniques, vol. 18, Issue 4, pp.222 – 228, Apr 1970.
[13] Marx, K.D., “Propagation modes, equivalent circuits, and characteristic‘terminations for multiconductor transmission lines with inhomogeneous dielectrics.” IEEE Trans. Microwave Theory Tech., vol. MTT-21, pp. 450-457,July 1973.
[14] G. I. Zysman, A. K. Johnson, “Coupled transmission line networks in an
inhomogeneous dielectric medium,” IEEE Trans. Microwave Theory Tech., MTT vol.17, pp. 753-759, Oct. 1969.
[15] E. M. T. Jones, J. T. Bolljahn, “Coupled-strip-transmissionline filters and directional
couplers,” IRE Trans. Microwave Theory Tech., vol. MTT-4, pp. 75-81, April, 1956.
[16] T.Ishizaki, M. Fujita, H. Kagata, T. Uwano and H. Miyake, “A Very Small Dielectric Planar Filter for Portable Telephones ,” IEEE Trans. Microwave Theory Tech., vol.42, pp.2017-2022, November 1994
[17] 林鴻欽, “多層低溫共燒陶瓷製程技術,”中華民國陶業研究學會會刊 第二
十一卷 第四期
[18] T. Nishikawa. “RF front end circuit components miniaturized using dielectric
resonators for portable telephones,” IEICE Trans., vol. E74 no. 6, pp. 1556-1562,
June 1991.
[19] R. Levy, S.B. Cohn, “A history of microwave filter research, design, and
development,” IEEE Trans. Microwave Theory and Tech., vol. MTT-32, no. 9. pp.1055-1067, Sept. 1984.
[20] R. Pregla. “Microwave filters of coupled lines and lumped capacitances,” IEEE Trans. Microwave Theory and Tech., vol. MTT-18, no.5, pp.278-280, May 1970.
[21] R. Levy, J.D. Rhodes, “A comb-line elliptic filter,” IEEE Trans. Microwave Theory
and Tech., vol.MTT-19, no.1, pp.26-29, Jan 1971.
[22] H. Kagata, T. Inoue, J. Kato, I. Kameyama, T.Ishizaki, M. Fujita, “ Low-fire microwave dielectric ceramics and multilayer devices with silver internal electrode,” Ceramic Transactions, vol. 32., The American Ceramic Society Inc., pp.
81-90.
[23] J. D. Rhodes, “The stepped digital elliptic filter,” IEEE Trans. Microwave Theory
and Tech., vol. MTT-17, no.4, pp.178-184, April 1969.
[24] T. Ishizaki, T. Uwano, “A Stepped impedance combline filter fabricated by using
ceramic lamination technique,” 1994 IEEE MTT-S Digest, WEIC-4, pp. 617-620,
1994.
[25] T.-G. Choi, J.-S. Lim, Y.-K. Nam, D.-C. Park, “A Method for reducing the number
of resonators in duplexer design,” in ICCS Conf. Proc., Singapore, vol. 1,pp.256-260, Nov. 1994.
[26] J.-S. Lim, Y.-K. Nam, D.-C. Park, S.-J. Lee, “Attenuation pole insertion in duplexer
design,” in 1995 Asia-Pacific Microwave Conf. Proc., vol. 1, Taejon, Korea, pp.280-282.
[27] I. Awai, T. Yamashita, “A dual-mode dielectric resonator filter with two notches,”
Proc. APMC, pp. 295–298, Oct. 1995.
[28] K. Wada, A. Suzuki, O. Hashimoto, H. harada, “Improvement of Harmonic Response of a / 4 Resonator BPF with Tap-Connection Technique,” Radio and Wireless Conference, 2001. RAWCON 2001. 2001 IEEE, pp.65-68, 2001
[29] K. Wada, O. Hashimoto, “A Method for Creating Multiple Attenuation Poles by a
Microwave Filter based on Tapped Resonators,” Radio and Wireless Conference, 2000. RAWCON 2000. 2000 IEEE. pp.171-174, 2000.
[30] Lee, B.H.; Park, S.S.; Peters, J.M.; Park, D.S.; Shin, D.Y.; Kim, N.C.; Yoon, J.H.;
“Improvement of out-of-passband characteristics for a laminated chip bandpass filter using tapped resonator,” Microwave and Millimeter Wave Technology Proc., pp.:1017 – 1020, Aug. 2002
[31] Wada, K.; Hashimoto, O, “A method for creating multiple attenuation poles
by a microwave filter based on tapped resonators” Radio and Wireless
Conference, 2000. RAWCON 2000. 2000 IEEE 10-13 Sept. 2000, pp.171–174, 2000
[32] www.agilent.com/view/rf