簡易檢索 / 詳目顯示

研究生: 劉忠侖
Liu, Zhong-Lun
論文名稱: 改質瀝青之工程與化學特性
Engineering and Chemical Characteristics of Polymer-Modified Asphalt
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 137
中文關鍵詞: 苯乙烯-丁二烯-苯乙烯高分子改質瀝青相容性穩定劑相容劑
外文關鍵詞: styrene-butadiene-styrene, polymer modified asphalt, compatibility, stabilizer, compatibilizer
相關次數: 點閱:180下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究對於不同原油所提煉瀝青,添加添加劑與改質劑後進行比較,在相同條件下,改質瀝青樣本分別進行分析,物理性質方面,進行傳統的黏度、針入度、軟化點等物性試驗;並透過動態剪切流變儀(Dynamic Shear Rheometer, DSR)來評估不同改質瀝青材料間質流性質差異。化學性質方面,以高壓凝膠滲透層析儀(High Pressure Gel Permeation Chromatography, HP-GPC)、薄層液相層析法之火焰離子檢視器(Thin-layer Chromatography – Flame Ionization Detector, TLC-FID)和傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectroscopy, FTIR) 分析高分子材料SBS之改質瀝青特性。最後,結合物理與化學性質的分析結果,對改善改質瀝青之相容性提出建議,建立的改質瀝青之摻配模式。改質瀝青的基底瀝青選擇,以基底瀝青的瀝青精含量較低或芳香族含量較高的相容性為佳; 改質劑選擇上,星型SBS雖具有較好的改質效果,工作性仍有改善空間,以線型SBS較為適合;SBS建議含量為5%~5.3%,含量低,易產生黏度不足的議題;含量高,工作性則會逐漸下降;穩定劑硫粉,對改質瀝青的彈性性質具正面效益,比例為3%對改善離析方面較佳;改質瀝青隨高溫儲存天數增加,軟化點可能隨之遞減。化性結果顯示,廣分布指數(PDI)隨硫比例增加而漸減,說明改質瀝青內部可能有均質化的現象;FTIR與HP-GPC的試驗結果,可應用於推估SBS含量。

    The research compare different asphalt refined by crude oil and added with additives and modifiers. In the same condition, analyze polymer modified asphalt respectively. For physical properties, the tests include viscosity test, penetration test, softening point test etc. And use Dynamic Shear Rheometer to evaluate rheological properties of different polymer modified asphalt. For chemical properties, analyze characteristics of SBS modified asphalt with High Pressure Gel Permeation Chromatography, Thin-layer Chromatography – Flame Ionization Detector, and Fourier Transform Infrared Spectroscopy. Finally, combine with results of physical properties and chemical properties, and make recommendation for improving compatibility of polymer modified asphalt, and build blending model of polymer modified asphalt. Use base asphalt of lower asphaltene or higher aromatic is better in consideration of compatibility. In the choice of modifier, the radial SBS has better modified effect, but the workability has to improve. So, the linear SBS may be better choice. Lower SBS content easily generated less viscosity. Higher SBS content made the workability decrease. So, the recommended SBS content is 5%~5.3%. Adding stabilizer sulfur can enhance the elasticity of polymer modified asphalt. 3% sulfur content can improve segregation evidently. The softening point of polymer modified asphalt would decrease with staging day increasing at high temperature. The results of chemical properties showed that PDI would reduce with sulfur content increasing. The forgoing also described the interior of polymer modified asphalt existed homogenization possibly. The test results of FTIR and HP-GPC could apply to evaluate SBS content.

    目錄 摘要……………………………………………………………………Ⅰ 英文延伸摘要…………………………………………………….…….Ⅲ 誌謝……………………………………………………………………Ⅶ 目錄……………………………………………………………………Ⅸ 表目錄 ………………………………………………………………ⅩⅣ 圖目錄 ………………………………………………………………ⅩⅤ 第一章 緒論 1.1前言………………………………………………………..1-1 1.2研究動機…………………………………………………..1-2 1.3研究目的…………………………………………………..1-2 1.4研究範圍…………………………………………………..1-3 第二章 文獻回顧 2.1瀝青簡介…………………………………………………..2-1 2.2瀝青材料組成與特性………………………………………..2-1 2.3改質劑……………………………………………………..2-3 2.3.1酸改質..………………………………………….2-3 2.3.2高分子改質劑…………………………………….2-3 2.4苯乙烯-丁二烯-苯乙烯(SBS) ………………………..2-5 2.4.1 SBS改質機制.…………………………………..2-8 2.4.2 SBS的膨脹度…………………………………...2-10 2.4.3 SBS改質瀝青相容性……………..…………….2-11 2.4.4 SBS改質瀝青的兩相行為….…………………..2-13 2.4.5 SBS改質瀝青的離析……………..……………2-14 2.4.6 SBS的降級(Degradation)…..……………………2-14 2.4.7量化改質瀝青的SBS含量………………………2-16 2.5添加劑的使用……………………………………………2-18 第三章 研究計畫 3.1研究方法…………………………………………………..3-1 3.2試驗材料…………………………………………………..3-2 3.2.1相容劑……………………………………………..3-2 3.2.2穩定劑……………………………………………..3-3 3.2.3高分子改質劑……………………………………..3-3 3.2.4基底瀝青…………………………………………..3-3 3.3改質瀝青拌和……………………………………………3-4 3.3.1改質劑與添加劑之比例…………………………..3-4 3.3.2改質瀝青拌和程序………………………………3-4 3.4試驗方法與試驗…………………………………………..3-6 3.4.1針入度試驗……………………………………….3-6 3.4.2黏滯度試驗………………………………………3-6 3.4.3軟化點試驗……………………………………..3-7 3.4.4離析試驗…………………………………………..3-8 3.4.5滾動薄膜烘箱試驗………………………………..3-8 3.4.6彈性回復率試驗...……………………………..3-9 3.4.7動態剪切流變儀試驗……………………………...…3-9 3.4.8薄層液相層析法之火焰離子檢視器……………3-11 3.4.9傅立葉轉換紅外線光譜儀………………………3-15 3.4.10 FTIR測定SBS含量…………………………3-17 3.4.11高效能凝膠滲透層析儀………………………..3-18 3.4.12 HP-GPC測定SBS含量……………………….3-21 3.4.13 零剪力黏度(ZSV)…….……………………….3-22 3.5試驗規範…………………………………………………3-23 第四章 試驗結果與討論 4.1基底瀝青油品之檢測分析………………………………..4-1 4.1.1物理特性…………………………………………..4-1 4.1.2化學特性…………………………………………..4-2 4.2改質瀝青摻配特性探討…………………………………4-3 4.2.1基本物性…………………………………………4-3 4.2.2溫度敏感性………………………………………4-4 4.2.3質流行為…………………………………………..4-5 4.2.4彈性回復率………………………………………4-8 4.3改質劑摻配特性……………………………………………..4-9 4.3.1基本物性……………………………………………...4-9 4.3.2溫度敏感性………………………………………4-10 4.3.3質流行為…………………………………………4-11 4.3.4彈性回復率………………………………………4-13 4.4改質劑摻配模式建立………………………………..4-14 4.4.1基本物性…………………………………………4-14 4.4.2溫度敏感性………………………………………4-18 4.4.3質流行為…………………………………………4-19 4.4.4彈性回復率………………………………………4-21 4.5改質瀝青穩定性評估……………………………………4-22 4.5.1基本物性…………………………………………4-23 4.5.2溫度敏感性………………………………………4-23 4.5.3質流行為…………………………………………4-24 4.5.4彈性回復率………………………………………4-26 4.6改質瀝青離析分析…………………………………..…4-27 4.6.1離析試驗結果……………………………………4-27 4.6.2離析對HP-GPC之影響…………………………4-28 4.7相容劑對改質瀝青的影響………………………………4-29 4.7.1基本物性…………………………………………4-30 4.7.2溫度敏感性………………………………………4-31 4.7.3質流行為…………………………………………4-32 4.7.4彈性回復率………………………………………4-33 4.7.5相容劑對離析的影響……………………………4-34 4.8建議改質瀝青之摻配………………………………………4-35 4.8.1改質瀝青之摻配方式……………………………….4-35 4.8.2改質瀝青之摻配模式……………………………….4-36 4.9高溫儲存對改質瀝青之影響………………………………4-38 4.9.1基本物性…………………………………………….4-39 4.9.2質流行為…………………………………………….4-40 4.9.3不同儲存天數對HP-GPC影響……………………4-42 4.9.4檢視不同試驗方法之黏度值差異………………….4-44 4.10改質劑含量測定………………………………………4-47 4.10.1以FTIR測定含量………………………………..4-48 4.10.2以HP-GPC測定SBS含量……………………4-49 4.10.3比較FTIR與HP-GPC之SBS含量推估結果….4-51 第五章 結論與建議 5.1結論………………………………………………………..5-1 5.2建議………………………………………………………..5-2 參考文獻………………………………………………..……………參-1 附錄…………………………………………………………….附-1 自述……………………………………………………………..……自-1 表目錄 表2.4.1 各種改質劑對瀝青的改質效果比較……………………….2-6 表2.4.2成品瀝青與現場生產比較…………………………………..2-9 表2.4.3瀝青A與B的基本物性與四組份比例……………………2-12 表2.4.4量化SBS含量之波長組合………………………………...2-18 表3.2.1高分子改質劑基本物性……………………………………..3-3 表3.4.1 各類型Spindle可量測黏度範圍以及所需試樣體積……..3-7 表3.5.1改質三型瀝青規範表………………………………………3-23 表4.1.1 PEN60/70瀝青物性結果…………………………………...4-1 表4.1.2 PEN85/100瀝青物性結果……………….…………………4-1 表4.2.1不同基底瀝青之改質瀝青主要基本物性…………………..4-3 表4.3.1不同改質劑之改質瀝青主要基本物性……………………..4-9 表4.4.1不同改質劑含量之改質瀝青主要基本物性………………4-14 表4.5.1 S85+L_L.SBS5%添加不同硫比例之主要基本物性…….4-22 表4.6.1不同硫比例之改質瀝青分子量分布………………………4-29 表4.7.1 S85+L_L.SBS5%添加相容劑之主要基本物性…………4-30 表4.9.1不同儲存天數之改質瀝青主要基本物性…………………4-39 表4.9.2不同儲存天數之改質瀝青的Brookfield黏度與ZSV….....4-47 表4.10.1基底瀝青與不同改質劑之改質瀝青的分子量分布……..4-50 圖目錄 圖2.2.1瀝青四組分結構圖…………………………………………..2-1 圖2.4.1線型SBS的結構式………………………………………….2-5 圖2.4.2線狀SBS排列方式………………………………………….2-5 圖2.4.3星型SBS的結構式………………………………………….2-5 圖2.4.4星狀SBS排列方式………………………………………….2-6 圖2.4.5 溶脹作用原理圖…………………………………………….2-8 圖2.4.6 改質瀝青生產流程圖……………………………………..2-10 圖2.4.7 兩種瀝青與其改質瀝青之相位角主曲線………………..2-12 圖2.4.8 SBS主導的連續相………………………………………...2-14 圖2.4.9瀝青主導的連續相 ………………………………………..2-14 圖2.4.10聚合物劣化的類型……………………………………….2-15 圖2.4.11 PS、PB與SBS的傅立葉紅外線光譜…………………...2-16 圖2.4.12不同SBS含量下的傅立葉紅外線光譜圖……………….2-17 圖2.4.13吸收度量測的基線繪製…………………………………..2-18 圖3.1.1研究流程……………………………………………………..3-2 圖3.2.1硫磺粉末………..……………………………………………3-3 圖3.3.1改質瀝青拌和程序圖………………………………………..3-4 圖3.3.2控溫設備..……………………………………………………3-5 圖3.3.3高速攪拌機…………………………..………….…………...3-5 圖3.3.4氮氣輸入設備…...……………………………………...……3-5 圖3.4.1火焰離子檢視器……………………………………………3-12 圖3.4.2 TLC/FID使用之注射針、層析棒、展開槽以及烘箱………3-13 圖3.4.3 TLC/FID之圖譜………..…………………….…………….3-14 圖3.4.4 FTIR分析儀………………………………………………..3-16 圖3.4.5吸收強度計算方式…………………………………………3-17 圖3.4.6 Peak ratio計算方式………..…………………….………..3-18 圖3.4.7 GPC層析譜示意圖………………………………………..3-19 圖3.4.8高效能凝膠滲透層析儀…………………………………....3-20 圖3.4.9 SBS改質瀝青之GPC圖譜…………………………….…3-22 圖4.1.1基底瀝青的四組份比例分布圖……………………………..4-2 圖4.2.1不同基底瀝青與其改質瀝青之溫度敏感性參數…………..4-5 圖4.2.2不同基底瀝青與其改質瀝青之複合模數主曲線…………..4-6 圖4.2.3不同基底瀝青與其改質瀝青之相位角主曲線……………..4-7 圖4.2.4不同基底瀝青與其改質瀝青之彈性回復率……………......4-8 圖4.3.1不同改質劑與其改質瀝青之溫度敏感性參數……………4-11 圖4.3.2不同改質劑與其改質瀝青之複合模數主曲線……………4-12 圖4.3.3不同改質劑與其改質瀝青之相位角主曲線………………4-13 圖4.3.4不同改質劑與其改質瀝青之彈性回復率………………....4-14 圖4.4.1 SBS含量與黏滯度的關係圖……………………………...4-16 圖4.4.2 SBS含量差異與改質瀝青的相變化……………………...4-16 圖4.4.3 SBS含量與軟化點的關係圖……………………………...4-17 圖4.4.4 60度黏滯度與軟化點的關係圖……………….................4-18 圖4.4.5不同SBS含量與其改質瀝青之溫度敏感性參數………...4-19 圖4.4.6不同SBS含量與其改質瀝青之複合模數主曲線………...4-20 圖4.4.7不同SBS含量與其改質瀝青之相位角主曲線…………...4-21 圖4.4.8不同SBS含量與其改質瀝青之彈性回復率………...……4-22 圖4.5.1不同硫比例之改質瀝青的溫度敏感性參數………………4-24 圖4.5.2不同硫比例之改質瀝青的複合模數主曲線………………4-25 圖4.5.3不同硫比例之改質瀝青的相位角主曲線…………………4-26 圖4.5.4不同硫比例之改質瀝青的彈性回復率……………….......4-27 圖4.6.1不同硫比例之改質瀝青的離析溫度差……………………4-28 圖4.7.1不同相容劑之改質瀝青的溫度敏感性參數………………4-31 圖4.7.2不同相容劑之改質瀝青的複合模數主曲線………………4-32 圖4.7.3不同相容劑之改質瀝青的相位角主曲線…………………4-33 圖4.7.4不同相容劑之改質瀝青的彈性回復率……………….......4-34 圖4.8.1黏滯度與硫比例的關係圖…………………………………4-37 圖4.8.2軟化點與硫比例的關係圖…………………………………4-37 圖4.9.1軟化點與儲存天數關係圖………………………………....4-40 圖4.9.2不同儲存天數之改質瀝青的複合模數主曲線……………4-41 圖4.9.3不同儲存天數之改質瀝青的相位角主曲線……………....4-41 圖4.9.4不同儲存天數之改質瀝青的GPC層析圖………………..4-43 圖4.9.5不同儲存天數之改質瀝青的分子量……………………....4-43 圖4.9.6不同剪應變率下之黏度示意圖……………………………4-45 圖4.9.7不同儲存天數之Cross模型的ZSV………………………4-46 圖4.10.1基底瀝青與改質瀝青的FTIR光譜比較圖……………....4-48 圖4.10.2 SBS含量與吸收強度比之關係………………………….4-49 圖4.10.3基底瀝青與不同改質繼之改質瀝青的GPC層析圖……4-50 圖4.10.4 SBS含量與SBS面積比例之關係……………………..4-51 圖4.10.5不同SBS含量之量測含量……………………………….4-52 圖4.10.6不同SBS含量之含量誤差……………………………….4-52 圖4.10.7不同硫比例、基底瀝青、改質劑之SBS量測含量……….4-53 圖4.10.8不同硫比例、基底瀝青、改質劑之SBS含量誤差……....4-54

    杜逸虹 (1983),「聚合體學(高分子化學) 」 ,三民書局。
    李煒光 (2013) 「我國SBS改性瀝青使用現狀及一種測試新技術」,第四屆瀝青材料國際學術會議,廣州,第95-103頁。
    張文政 (2004),硫磺助溶劑對高分子改質瀝青之影響,國立成功大學土木工程研究所碩士論文,台南。
    張玉貞 (2013) 「中國瀝青材料生產技術現狀 」,第四屆瀝青材料國際學術會議,廣州,第31-42頁。
    楊林江、李井軒 (2001)「SBS改性瀝青的生產與應用」,人民交通出版社,北京。
    劉伃芝(2012),瀝青膠漿質流行為與轉爐石添加於石膠泥瀝青混凝土之工程性質評估,國立成功大學土木工程研究所碩士論文,台南。
    《瀝青生產與應用技術手冊》編委會 (2010) 「瀝青生產與應用技術手冊」,中國石化出版社
    Airey, G.D. (2003). “Rheological Properties of Styrene Butadiene Styrene Polymer Modified Road Bitumens,” Fuel, Vol.82, Issue 14, pp.1709–1719.
    Blanco, R., Rodriguez, R., Garcia-Garduno, M., and Castano, V.M.(1996). “Rheological Properties of Styrene-Butadiene Copolymer –Reinforced Asphalt,” Journal of Applied Science, Vol.61, pp.1493-1501.
    Brule, B., Ramond, G. and Such, C. (1986).“Relationships Between Composition, Structure, and Properties of Road Asphalts: State of Research at the French Public Works Central Laboratory,” Journal of the Transportation Research Board , Transportation Research Record 1096, pp.22-33.
    Brule, B., Brion,Y., and Tanguy, A. (1988).” Paving Asphalt Polymer Blends: Relationship Between Composition, Structure and Properties,” Journal of the Association of Asphalt Paving Technologists, Vol.57, pp.41–64.
    Bull, A.L., and Vonk, W.C. (1994).”Thermoplastic Elastomer and Bitumen Blends for Roof and Road,” paper TPE 6.3.1, Shell Chemicals, London, UK.
    Cai, J. (1994).”Determination of Rubber Content in Rubber-Asphalt by Infrared Spectrum,” Journal of Zhejiang University, Vol.28, pp.385-388.
    Choquet, F.S., and Ista, E.J., (1992)”The Determination of SBS, EVA, and APP Polymers in Modified Bitumens,” ASTM STP 1108, pp.35-49.
    Dongre, R., Button, J.W., Kluttz, R.Q., Anderson, D.A.(1997). “Evaluation of Superpave Binder Specification with Performance of Polymer-Modified Asphalt Pavement,” Progress of Superpave:Evaluation and Implementation, ASTM STP 1322, pp.80-100.
    Federal Highway Administration (2012).The Use and Performance of Asphalt Binder Modified with Polyphosphoric Acid (PPA) , FHWA-HIF-12-030,New Jersey.
    Ismail, A., Al-Mansob, R.A., Yusoff, N.I.B.M., Karim M.R.(2012) “Effect Of Toluene As Disperser On The Bitumen Modified With Epoxidized Natural Rubber With Aging Simulation,” Australian Journal of Basic and Applied Science, Vol.6, No.12, pp.97-101
    Khattak, M.J., and Baladi, G.Y.(1998). “Engineering Properties of Polymer Modified Asphalt Mixture,” Journal of the Transportation Research Board, Transportation Research Record1638, pp.12-21.
    Lesueur, D. (2009). “The Colloidal Structure of Bitumen: Consequences on the Rheology and on the Mechanisms of Bitumen,” Advances in Colloid and Interface Science, Vol.145, pp.42-82
    Masson, J.F, Pelletier, L.,and Collins, P.(2001). “Rapid FTIR Method for Quantification of Styrene-butadiene Type Copolymers in Bitumen,” J. Appl. Polym. Sci., 79: 1034-41
    Masson, J.F., Collins, P., Woods, J.R., Bundalo-Perc, S. ,and Al-Qadi, I. ( 2006). Degradation of Bituminous Sealants due to Extended Heating Before Installation: a Case Study, report NRCC-48663, Institute for Research in Construction, Ottawa, Canada.
    Mouillet, V., Lamontagne, J., Durrieu, F., Planche, J.P., and Lapalu, L. (2008). “Infrared Microscopy Investigation of Oxidation and Phase Evolution in Bitumen Modified with Polymers,” Fuel, Vol. 87, pp.1270-80.
    Nasrazadani, S., Mielke, D., Springfield T., and Ramasamy, N. (2010).Practical Applications of FTIR to Characterize Paving Materials, Texas Department of Transportation, Technical Report 0-5608-1, Texas.
    Oliver, J., Khoo, K.Y., and Waldron, K. (2012). ” The Effect of SBS Morphology on Field Performance and Test Results,” Road Materials and Pavement Design, 13:1, pp.104-127.
    Polacco, G., Stastna, J., Biondi, D., and Zanzotto, L. (2006). “Relation Between Polymer Architecture and Nonlinear Viscoelastic Behavior of Modified Asphalts,” Current Opinion in Colloid and Interface Science, No.11, pp.230-245.
    Sengoz, S., and G. Isikyakar (2008). ”Evaluation of the Properties and Microstructure of SBS and EVA Polymer Modified Bitumen,” Construction and Building Materials, Vol.22, Issue9, pp.1897-1905.
    Shell Bitumen (2003) The Shell Bitumen Handbook, Shell Bitumen, UK.
    Skoog, D.A., Holler, F.J., and Crouch, S.R. (2007) .Principle of Instrumental Analysis, Thomson Brooks/Cole, 6th edition, CA, Ch.16A
    Sun, D., Zhang, L., and Zhang, X. (2011). “Quantification of SBS Content in SBS Polymer Modified Asphalt by FTIR, ” Advanced Materials Research, Vol.287/290, pp.953-960.
    Urquhart, R., and Khoo, K.Y. (2013). Investigations into the Effects of Polymer Segregations and Degradation in Polymer Modified Binders, AP-T22713, Austroads, Sydney
    Valcke, E., Rorif, F., and Smets, S. (2009). “Ageing of EUROBITUM Bituminised Radioactive Waste: An ATR-FTIR Spectroscopy Study,” Journal of Nuclear Materials, Vol.393, pp.175-185.
    Vonk, W.C., and Bull, A.L. (1989). Phase Phenomena and Concentration Effects in Blends of Bitumen and SBS Elastomers., International Roofing Congress, 7th, Munich, Germany, pp. 210–222.
    Vonk, W., Korenstra, J., Bodt, D. and Heimerikx, G. (1996). SBS Copolymers for Road Binders with Improved Processing Characteristics and Heat Stability, Eurasphalt and Eurobitume congress, 1st, 1996, Strasbourg, France.
    Wang, T., Yi, T., and Yuzhen Z. (2010). ”The Compatibility of SBS-Modified Asphalt,” Petroleum Science and Technology, Vol.28, No.7, pp.764-772.
    Wen, G., Zhang, Y., Zhang, Y., Sun, K., and Fan, Y. (2002). “Rheological Characterization of Storage-Stable SBS-Modified Asphalts,” Polymer Testing, Vol.21, No.3, pp.295-302.

    無法下載圖示 校內:2019-07-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE