| 研究生: |
劉佳運 Liu, Chia-Yun |
|---|---|
| 論文名稱: |
水聲計應用於底床載輸砂之監測-以油礦溪為例 Hydrophone on Bed-load Discharge Monitoring – Case Study in Jiasian, Taiwan |
| 指導教授: |
謝正倫
Shieh, Chjeng-Lun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 自然災害減災及管理國際碩士學位學程 International Master Program on Natural Hazards Mitigation and Management |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 日本管式水聲計 、底床載輸砂 |
| 外文關鍵詞: | Pipe hydrophone, Bed-load transport |
| 相關次數: | 點閱:111 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣位處於太平洋火環帶附近,因此造山運動發達、地質較為破碎。近年來由於全球氣候變遷,長延時、強降雨的降雨型態愈發頻繁,其所造成的土砂災害也更是嚴重,在山區中土砂的運輸對於坡地的水土保持影響甚大,尤其底床載的運輸對於河床地形的演變更是劇烈。
在早期,政府對於底床載輸砂量的推估多是採取於降雨事件中直接量測水樣並加以分析或者是利用經驗公式推估,然而於降雨事件中直接量測水樣的方法有安全性上的疑慮並且受到採樣器的容量限制,而依照經驗公式推估的方法也會因沒有實際土砂濃度的影響而有錯估的情形。因此如日本管式水聲計、地聲計、地震波等底床載的間接量測方法便愈顯重要,本研究將會著重於日本管式水聲計的理論研究、實驗率定方法以及藉由實際降雨事件的量測結果推估底床載輸砂量。
由於台灣較高比例的山區地形,造成了大部分的河流流況短小且湍急,高強度的降雨所造成的湍急河水對於人為的採樣更是一大威脅,因此利用間接的方法量測底床載輸砂量是必要的。本研究區域為高雄市甲仙區的油礦溪,油礦溪為旗山溪支流,莫拉克颱風之後造成了本區域大量的崩塌產生,而崩塌的土砂為河道輸砂的主要來源,因此本區域的輸砂量是極為可觀的。本研究於2016年底裝設了日本管式水聲計,並且記錄了隔年6月1日及6月13日開始之梅雨事件以及7月29日和7月30日之尼莎、海棠颱風事件。
Taiwan is located in the Pacific Rim Seismic Belt, so typhoons and heavy torrential hit Taiwan every year. Along with the climate changes, the amount of rainfall increase and duration of rainfall also extend, which makes the sediment-related disaster more serious. Sediment transport is highly relative to water and soil conservation in the mountain area. Especially, bed-load monitoring plays an important role in riverbed variation.
In the past, the government usually used field investigation to obtain bed-load transport or calculated by empirical equations. However, it has some disadvantages like high risk in high flow and the empirical equations calculation are not match to the exact bed-load transport. Therefore, indirect methods like the acoustic method for the continuous monitor will become more important in the future. There are kinds of methodologies on indirect bed-load monitoring like hydrophone, geophone or seismic wave. This paper will focus on the theory of hydrophone and how it will be applied on site to identify the feasibility in Taiwan. What’s more, the detecting rate and difference of volume compared with different methods are also inferred.
Due to the high proportion of land on mountain area, most of the rivers in Taiwan are short and steep. The stormy weather and turbulent river also make it more difficult to evaluate the sediment transport during typhoon seasons. The research of indirect method on bed-load monitoring is necessary. The study area of this research is located at Yokaung River a mountain stream in Jiasian District, Kaohsiung city. The instrument of pipe hydrophone had been installed in 2016 and it had recorded two torrential rainfall events (June 1st and June 13th) and two typhoon events (July 29th and July 30th) in 2017.
[1]Ashida, K., & Michiue, M. (1972, October). Study on hydraulic resistance and bed-load transport rate in alluvial streams. Proceedings of the Japan Society of Civil Engineers (Vol. 1972, No. 206, pp. 59-69).
[2]Bunte, K., Swingle, K. W., & Abt, S. R. (2007). Guidelines for using bedload traps in coarse-bedded mountain streams: construction, installation, operation, and sample processing (Vol. 191). US Department of Agriculture, Forest Service, Rocky Mountain Research Station.
[3]Claude, N., Rodrigues, S., Bustillo, V., Breheret, J.G., Macaire, J.J., and Juge, P., (2012). “Estimating bedload transport in a large sand–gravel bed river from direct sampling, dune tracking and empirical formulas.” Geomorphology, 179, 40-57.
[4]Dell'Agnese, A., Mao, L., & Comiti, F. (2014). Calibration of an acoustic pipe sensor through bedload traps in a glacierized basin. Catena, 121, 222-231.
[5]Egozi, R., & Ashmore, P. (2009). Experimental analysis of braided channel pattern response to increased discharge. Journal of Geophysical Research: Earth Surface, 114(F2).
[6]Emmett, W. W. (2010). Observations of bedload behavior in rivers and their implications for indirect methods of bedload measurement. US Geological Survey Scientific Investigations Report, 5091, 159-170.
[7]Gao, P. (2011). An equation for bed-load transport capacities in gravel-bed rivers. Journal of hydrology, 402(3-4), 297-305.
[8]Goto, K., Itoh, T., Nagayama, T., Kasai, M., & Marutani, T. Influences of boundary condition of pipe on acoustic wave deformation. Journal of the Japan Society of Erosion Control Engineering
[9]Goto, K., Itoh, T., Nagayama, T., Kasai, M., & Marutani, T. (2014). Experimental and theoretical tools for estimating bedload transport using a Japanese pipe hydrophone. International Journal of Erosion Control Engineering, 7(4), 101-110.
[10]Gray, J. R., Laronne, J. B., & Marr, J. D. (2010). Bedload-surrogate monitoring technologies (No. 2010-5091). US Geological Survey.
[11]Itoh, T., Gotoh, K., Utsunomiya, R., Nonaka, M., Nagayama, T., Tsutsumi, D., & Mizuyama, T. (2014, November). Experimental studies for monitoring of bedload using Various sensors. In Proceedings of International Symposium in Pacific Rim, Interpraevent held in Nara, Japan (pp. 25-28).
[12]Koshiba, T., Sumi, T., Takemon, Y., & Tsutsumi, D. (2015). Flume Experiment on Bedload Measurement with a Plate Microphone.
[13]Mao, L., Dell'Agnese, A., Huincache, C., Penna, D., Engel, M., Niedrist, G., & Comiti, F. (2014). Bedload hysteresis in a glacier‐fed mountain river. Earth Surface Processes and Landforms, 39(7), 964-976.
[14]Mao, L., Carrillo, R., Escauriaza, C., & Iroume, A. (2016). Flume and field-based calibration of surrogate sensors for monitoring bedload transport. Geomorphology, 253, 10-21.
[15]Marineau, M., Minear, J. T., & Wright, S. A. (2015). Using hydrophones as a surrogate monitoring technique to detect temporal and spatial variability in bedload transport. In 3rd Joint Federal Interagency Conference.
[16]Mizuyama, T., Nonaka, M., & Nonaka, N. (1996). Observation of sediment discharge rate using a hydrophone. J. Jap. Soc. of Erosion Control Eng, 49(4), 34-37.
[17]Mizuyama, T., Matsuoka, M., & Nonaka, M. (2008). Bedload measurement by acoustic energy with Hydrophone for high sediment transport rate. Journal of the Japan Society of Erosion Control Engineering, 61(1), 35-38.
[18]Mizuyama, T., Satofuka, Y., Laronne, J., Nonaka, M., & Matsuoka, M. (2008). Monitoring sediment transport in mountain torrents. na.
[19]Mizuyama, T., Laronne, J. B., Nonaka, M., Sawada, T., Satofuka, Y., Matsuoka, M., & Yamaguchi, S. (2010). Calibration of a passive acoustic bedload monitoring system in Japanese mountain rivers. US Geological Survey Scientific Investigations Report, 5091, 296-318.
[20]Mizuyama, T., Oda, A., Laronne, J. B., Nonaka, M., & Matsuoka, M. (2010). Laboratory tests of a Japanese pipe geophone for continuous acoustic monitoring of coarse bedload. US Geological Survey Scientific Investigations Report, 5091, 319-335.
[21]Mizuyama, T., Hirasawa, R., Kosugi, K. I., Tsutsumi, D., & Nonaka, M. (2011). Sediment monitoring with a hydrophone in mountain torrents. International Journal of Erosion Control Engineering, 4(2), 43-47.
[22]Møen, K. M., Bogen, J., Zuta, J. F., Ade, P. K., & Esbensen, K. (2010). Bedload measurement in rivers using passive acoustic sensors. US Geological Survey Scientific Investigations Report, 5091, 336-351.
[23]Nakaya, H. (2008). A case study of influences on the bed load detection rate of hydrophone system exerted by flow discharges. Journal of the Japan Society of Erosion Control Engineering, 61(4).
[24]Sawai, K. (1990). Techniques for sediment discharge measurement in laboratories.
[25]Shrestha, S. M., Shibata, K., Hirano, K., Takahara, T., & Matsumura, K. River Bedload Monitoring Using a Radar System.
[26]Tsutsumi, D., Higashi, Y., Nonaka, M., & Fujita, M., (2017). Bedload monitoring in a mountain stream : Method for improving the accuracy of the calibration relationship between acoustic pulses and bedload discharge.
[27]Uchida, T., Okamoto, A., Hayashi, S., Suzuki, T., Fukumoto, A., Yamashita, S., & Tagata, S. (2013). Hydrophone observations of bedload transport in mountainous rivers of Japan. In Proc. of the 12th ISRS symposium (Advances in River Sediment Research) (pp. 1749-1756).
[28]Yamashita, S., & Tagata, S. Possibility of early warning for large-scale landslides using hydrological and sediment transport observations in mountain rivers.
[29]谷口伸一, 板倉安正. (1992). 音響法による流砂量計測のための信号解析 (蜷木實教授追悼号).
[30]堤大三, 平澤良輔, 水山高久, 志田正雄, 藤田正治. (2010). 山地流域における音響法を用いた流砂量観測, 京大防災研年報, 第 53 号 B.
[31]堤大三, 野中理伸, 水山高久, 志田正雄, 市田児太朗, 宮田秀介, 藤田正治. (2013). 山地流域における定量的な掃流砂量計測.
[32]天野唯子, 吉田一雄, 野中理伸, 伊藤隆郭, 水山高久. (2016). ハイドロフォンに用いるパイプの厚さに関する検討. 砂防学会誌, 68(5), 43-49.
[33]劉建榮, 許少華, 蘇宏仁. (2011). 陡坡卵礫石小型河川底床推移載之現場量測與經驗公式之比較: 以筏子溪為案例.
[34]鈴木拓郎, 水野秀明, 小山内信智, 平澤良輔, 長谷川祐治. (2010). 音圧データを用いたハイドロフォンによる掃流砂量計測手法に関する基礎的研究. 砂防学会誌, 62(5), 18-26.
[35]栗原淳一, 宮本邦明. (1992). 音響を利用した流砂量計測装置について. 砂防学会誌, 44(5), 26-31.
[36]髙木強治, 吉永育生, 島崎昌彦, 常住直人. (2016). パイプ型ハイドロフォンの露出幅と砂礫の捕捉率. 農業農村工学会論文集, 84(3), IV_9-IV_10.
[37]關根正人. (2004). 動床水力學, 中華防災學會出版委員會.
[38]清水康行, 中津川誠, 荒井信行. (1988). 現 場 の た め の 水 理 学. 北海 道 開 発 局 土 木 試 験 所 河 川 研 究 室, 38.
[39]謝孟荃, 黃宏斌. (2007). 混合粒徑輸砂量估算之研究. 中華水土保持學報.
[40]行政院農業委員會水土保持局. (2018). 集水區河道土砂流出量觀測系統設置及研究.
[41]星野和彦, 酒井哲也, 水山高久, 里深好文, 小杉賢一朗, 山下伸太郎, 野中理伸. (2004). 流砂等計測システム (六甲住吉型) と観測事例. 砂防学会誌, 56(6), 27-32.
[42]詹錢登. (2018). 泥沙運行學, 五南圖書出版公司
[43]程運達. (2009). 河砂運移及量測技術之研究
[44]日本工營株式會社. (2012). 信濃川下流砂防総合土砂管理業務.
[45]日本工營株式會社. (2016). 常願寺川土砂移動モニタリング調査業務.