簡易檢索 / 詳目顯示

研究生: 黃柏寧
Huang, Po-Ning
論文名稱: 應用設置與未設置凸起陣列衝擊抽氣流道冷卻燃氣渦輪動葉前緣之空氣熱傳性能實驗研究
An Experimental Study of Aerothermal Performance in Leading Edge Coolant Channel of Gas Turbine Rotor Blade using Impingement Effusion Channels With and Without Protrusion Array
指導教授: 張始偉
Chang, Shyy-Woei
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 72
中文關鍵詞: 交叉橢圓形凸起旋轉衝擊噴柱流道抽氣渦輪葉片前緣冷卻
外文關鍵詞: Crossed Elliptical Pedestal, Rotating Impingement Channel, Effusion, Turbine Blade Leading Edge Cooling
相關次數: 點閱:22下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三列衝擊噴流對於在流道方向角為20˚的兩個旋轉流道內部之圓弧型衝擊壁面(Concave effusion wall),於有交叉橢圓型凸起(Crossed Elliptical Pedestal, CEP)與無CEP條件下,其熱傳、壓降與氣熱性能,是透過整體紐賽數(Nu)分佈、凡寧摩擦係數(f)與氣熱性能指數(API)進行評估和比較。流道的雷諾數(Rec)、旋轉數(Roc)、密度比(Δρ/ρ)與浮力數(Buc)分別位於7500-18000、0-0.75、0.44-0.58與0.0441-1.51的範圍內。科氏力效應已自浮力與慣性力效應中解耦,能在旋轉條件下使TS(Trailing surface)之旋轉對靜止Nu比(Nu/Nu0)隨Roc增加而穩定升高;但在LS(Leading surface)側則導致Nu/Nu0隨Roc從1先升高後降低。鑒於文獻中報導的旋轉面上Nu/Nu0隨Roc變化的各種形態廣泛,本研究實驗驗證Δρ/ρ與Rec為造成這些不同變化的主要參數。針對兩種旋轉流道中皆會降低效率的不利浮力效應,受耗流慣性與科氏力影響的近壁流動,造成浮力與Rec和Roc間的交互作用,使得在Rec或Roc增加時浮力對熱傳的負面效應得以削弱。CEP所帶來的冷卻效應多在旋轉測試條件之下,NuCEP普遍可使高於平滑壁面(Smooth wall, SW)流道的參考值NuSW,最高提升幅度達34%。與衝擊噴流、抽氣孔及CEP有關的基本流場機制,選柱提升氣熱性能,相較於Dittus-Boelter與Blasius的參考值,SW流道將API提升至5.81-9.9倍,CEP則提升6.65-9.93倍。於高Roc與大Δρ/ρ之操作條件下,CEP帶來的氣熱性能提升最為顯著,API可較SW流道提升達30%。

    This study experimentally investigates the aerothermal performance of the rotating impingement channels equipped with crossed elliptical pedestal (CEP) for gas turbine blade leading-edge cooling. Using a curved impingement wall with three rows of jets and two rows of effusion holes at a 20° channel orientation, the effects of Reynolds number (Rec), Rotation number (Roc), and fluid density ratio (Δρ/ρ) on heat transfer and flow resistance are explored under both stationary and rotating conditions. In static conditions, CEP enhances local heat transfer by disrupting boundary layers and altering crossflow behavior. It boosts heat transfer near side jets while suppressing stagnation peaks for the central jets. Under rotation, Coriolis and buoyancy forces asymmetrically influence jet momentum—weakening it on the leading surface (LS) and strengthening it on the trailing suraface (TS)—with CEP further amplifying this effect and improving local heat transfer, especially on TS surfaces. The study finds out that increasing Rec and Roc diminishes the adverse buoyancy impact on heat transfer, leading to expanded high-heat-transfer regions. The CEP configuration consistently raises Nusselt numbers and aerothermal performance indices (API) from the smooth-walled references, with Nu and API ratios up to 1.34 and 1.3, respectively. A multivariable regression model correlate Nu/Nu0 data into the functions of Rec, Roc, and buoyancy number. Overall, the CEP design offers superior cooling performance in high rotation numbers, supporting its applicability to thermal management of an advanced gas turbine rotor blade. Recommendations for future improvement include optimizing protrusion geometry and coolant distribution by adjusting nozzle diameters for caoping with the higher thermal loads.

    摘要 I Extended Abstract II 誌謝 XVIII 目錄 XIX 表目錄 XX 圖目錄 XX 符號說明 XXIII 第一章 前言與文獻回顧 1 第二章 研究方法 7 2.1實驗設備 7 2.2實驗數據處理 11 第三章 結果與討論 15 3.1靜態熱傳性能分析 15 3.2旋轉熱傳性能分析 20 3.3 f與API之分析 35 第四章 結論與未來建議 41 參考文獻 43

    [1] T. S. Chowdhury, F. T. Mohsin, M. M. Tonni, M. N. H. Mita, M. M. Ehsan, A critical review on gas turbine cooling performance and failure analysis of turbine blades, Int. J. Thermofluids, 18 (2023) 100329.
    [2] X. Fan, L. Li, J. Zou, Y. Zhou, Cooling methods for gas turbine blade leading edge: comparative study on impingement cooling, vortex cooling and double vortex cooling, Int. Communication Heat Mass Transfer, 100 (2019) 133-145.
    [3] G.C. Ngetich, A.V. Murray, P.T. Ireland, E. Romero, A three-dimensional conjugate approach for analyzing a double-walled effusion-cooled turbine blade, J. Turbomach., 141 (2019) 011002.
    [4] H. Wei and Y. Zu, Experimental and numerical studies on the enhanced heat transfer performance and the flow resistance characteristics of the double-wall cooling structure with jet impingement holes and pin fins, Int. J. Thermal Sciences, 186 (2023) 108109.
    [5] J.A. Parsons and J.-C. Han, Rotation effect on jet impingement heat transfer in smooth rectangular channels with heated target walls and radially outward cross flow, Int. J. Heat Mass Transfer, 13 (1998) 2059-2071.
    [6] J.A. Parsons and J.-C. Han, Jet-impingement heat transfer in rotating channels with staggered extraction flow, J. Thermophysics and Heat Transfer, 19 (2005) 156-162.
    [7] K.V. Akella and J.-C. Han, Impingement cooling in rotating two-pass rectangular channels with ribbed walls, J. Thermophysics and Heat Transfer, 13 (1999) 364-371.
    [8] S.-S. Hsieh, H.-H. Tsai, S.-C. Chan, Local heat transfer in rotating square-rib-roughened and smooth channels with jet impingement, Int. J. Heat and Mass Transfer, 47 (2004) 2769–2784.
    [9] H. Iacovides, D. Kounadis, B.E. Launder, J. Li, Z. Xu, Experimental study of the flow and thermal development of a row of cooling jets impinging on a rotating concave surface, J. Turbomach., 127 (2005) 222-229.
    [10] T.J. Craft, H. Iacovides, N.A. Mostafa, Numerical modelling of flow and heat transfer from an array of jets impinging onto a concave surface under stationary and rotating conditions, Proceedings of ASME Turbo Expo 2008, GT2008-50624.
    [11] S.K. Hong, D.H. Lee, H.H. Cho, Heat/Mass transfer measurement on concave surface in rotating jet impingement, Journal of Mechanical Science and Technology, 22 (2008) 1952-1958.
    [12] S.K. Hong, D.H. Lee, H.H. Cho, Effect of jet direction on heat/mass transfer of rotating impingement jet, Applied Thermal Engineering, 29 (2009) 2914–2920.
    [13] S.K. Hong, D.H. Lee, H.H. Cho, Heat/mass transfer in rotating impingement/effusion cooling with rib turbulators, Int. J. Heat Mass Transfer, 52 (2009) 3109–3117.
    [14] H.-W. D. Chiang and H.-L. Li, Jet impingement and forced convection cooling experimental study in rotating turbine blades, Proceedings of ASME Turbo Expo 2009, GT2009-59795.
    [15] S.W. Chang and K.-C. Yu, Thermal performance of radially rotating trapezoidal channel with impinging jet-row, Int. J. Heat and Mass Transfer, 135 (2019) 246–264.
    [16] J.A. Lamont, S.V. Ekkad, M.A. Alvin, Effects of rotation on heat transfer for a single row jet impingement array with crossflow, Journal of Heat Transfer, 134 (2012) 082202.
    [17] L. Furlani, A. Armellini, L. Casarsa, Rotational effects on the flow field inside a leading edge impingement cooling passage, Experimental Thermal and Fluid Science, 76 (2016) 57–66.
    [18] P. Singh and S. Ekkad, Effects of rotation on heat transfer due to jet impingement on cylindrical dimpled target surface, Proceedings of ASME Turbo Expo 2016, GT2016-57145.
    [19] C.A. Elston and L.M. Wright, Leading edge jet impingement under high rotation numbers, J. Thermal Science and Engineering Applications, 9 (2017) 021010.
    [20] J. Wang, J. Liu, L. Wang, B. Sundén, S. Wang, Conjugated heat transfer investigation with racetrack-shaped jet hole and double swirling chamber in rotating jet impingement, Numerical Heat Transfer, Part A, 73 (2018) 768–787.
    [21] L. Cocchi, A. Picchi, B. Facchini, Effect of rotation and hole arrangement in cold bridge-type impingement cooling systems, Int. J. Turbomachery Propulsion and Power, 4 (2019) 13.
    [22] J. Wang, H. Deng, Z. Tao, Y. Li, J. Zhu, Heat transfer in a rotating rectangular channel with impingement jet and film holes, Int. J. Thermal Sciences, 163 (2021) 106832.
    [23] H. Deng, Z. Wang, J. Wang, H. Li, Flow and heat transfer in a rotating channel with impingement cooling and film extraction, Int. J. Heat Mass Transfer, 180 (2021) 121751.
    [24] H. Deng, H. Li, J. Xu, Heat transfer in an impingement cooling channel under isothermal boundaries at high rotation numbers, Int. J. Heat Mass Transfer, 182 (2022) 121940.
    [25] H. Li, H. Deng, L. Qiu, Effect of channel orientation on heat transfer in a rotating impingement cooling channel, Int. J. Heat Mass Transfer, 187 (2022) 122493.
    [26] R. You, J. Che, H. Li, Z. Tao, Flow and heat transfer in rotating smooth and ribbed multi-channel double-wall structure with multiple-jet impingement cooling, Thermal Science and Engineering Progress, 42 (2023) 101917.
    [27] K. Yan, H. Deng, H. Li, Experimental and numerical investigation of thermo-hydraulic behavior in a rotating wedge-shaped trailing edge channel with internal jet impingement, Applied Thermal Engineering, 234 (2023) 121244.
    [28] S.W. Chang and H.-D. Shen, Heat transfer of impinging jet array with web-patterned grooves on nozzle plate, Int. J. Heat Mass Transfer 141 (2019) 129–144.
    [29] S.W. Chang and J.L. Lee, Effect of grooved nozzle plate on aerothermal performance of rotating impingement-jet and pin-fin channel in axial-flow mode, Int. J. Heat Mass Transfer, 217 (2023) 124664.
    [30] R. You, J. Che., H. Li, Heat transfer in rotating impingement channels with asymmetric curvature target surfaces for different channel orientations and jet hole shapes, Int. Communications Heat Mass Transfer, 157 (2024) 107729.
    [31] N. Kaewchoothong, T. Nontula, C. Nuntadusit, Effect of crossflow orientations in the impinging jet flow channel on flow and heat transfer enhancement under rotations, Int. J. Thermal Sciences, 208 (2025) 109478.
    [32] S.W. Chang, P.-A. Chiang, W. L. Cai, Thermal performance of impinging jet-row onto trapezoidal channel with different effusion and discharge conditions, Int. J. Thermal Sciences, 159 (2021) 106590.
    [33] J.C. Han, Advanced cooling in gas turbines 2016 Max Jakob Memorial Award Paper, ASME. J. Heat Transfer, 140 (2018) 113001.
    [34] A. Ravanji, M.R. Zargarabadi, Effects of pin-fin shape on cooling performance of a circular jet impinging on a flat surface, Int. J. Thermal Sciences, 161 (2021) 106684.
    [35] O. Yalçınkaya, U. Durmaz, A.Ü. Tepe, Ü. Uysal, M.B. ¨Ozel, Thermal performance of elliptical pins on a semicircular concave surface in the staggered array jet impingement cooling, Applied Thermal Engineering, 231 (2023) 120998.
    [36] S.J. Kline, F.A. McClintock, Describing uncertainties in single sample experiments, Mech. Eng. 75 (1953) 3-8.
    [37] S.W. Chang, and H.-F. Liou, Heat transfer of impinging jet-array onto concave- and convex-dimpled surfaces with effusion, Int. J. Heat Mass Transfer, 52 (2009) 4484-4499.
    [38] M. Forster, P. Ligrani, B. Weigand, R. Poser, Experimental and numerical investigation of jet impingement cooling onto a rib roughened concave internal passage for leading edge cooling of a gas turbine blade, Int. J. Heat Mass Transfer, 227 (2024) 125572.
    [39] H. Deng, L. Qiu, Z. Tao, S. Tian, Heat transfer study in rotating smooth square U-duct at high rotation numbers, Int. J. Heat and Mass Transfer, 66 (2013) 733-744.
    [40] X. Zhang, R. You, H. Li, S. Liu, Enhancing heat transfer in a rotating droplet-shaped pin-fins channel: Investigating the influence of rotational radius ratio and temperature ratio, Applied Thermal Engineering, 245 (2024) 122839.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE