簡易檢索 / 詳目顯示

研究生: 張幼旻
Chang, Yu-Min
論文名稱: 應用雙組昇降壓轉換器建構 數位控制式變流器系統之研究
Study on Digital-Control Inverter System with Dual Buck-Boost Converter
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 74
中文關鍵詞: 變流器數位信號處理器昇降壓轉換器
外文關鍵詞: Inverter, DSP, buck-boost converter
相關次數: 點閱:101下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研製應用雙組昇降壓轉換器建構數位控制式變流器系統,以雙組昇降壓轉換器併合來呈現變流器之特性。各組昇降壓轉換器輸出均為具直流準位且大於零之弦波交流電壓,當兩組昇降壓轉換器輸出相位差180°時,負載端可得到與市電電壓大小110Vrms和頻率60Hz相符之正弦電壓,故在控制上須具有高動態響應速度,使開關能在預期之操作點快速切換,並以數位信號處理器為控制核心,實現變流器系統之數位化控制。控制策略採用雙迴圈控制方式,外迴圈以電壓控制模式,使輸出達到穩壓之效果;而內迴圈則藉由電流控制模式,提高系統穩定度,並採用定頻方式修正開關導通率,使變流器輸出達到預期之弦波電壓。最後,本文以數位信號處理器TMS320LF2407A為核心,實際完成一額定輸出功率300W,輸出電壓110Vrms/60Hz之變流器系統。

    The purpose of the thesis is to study on digital-control inverter system with dual buck-boost converter, using the dual buck-boost converter combined together to display the properties of inverter. When the dual buck-boost converter’s output sinusoidal voltage are larger than zero volt with dc offset and one converter’s output sinusoidal voltage is different from the other by 180 degrees out of phase, the load gains the 110Vrms/60Hz sinusoidal voltage. So the system should be high-dynamic under control to make converter’s switch to work with variable operating point and using the DSP to reach digital control inverter system. The control method is using double loop control. The outer loop is using voltage control mode to reach output voltage constantly, and the inner loop is using current control mode to make the system more stable. By controlling the switching on the constant frequency to let the output voltage will reach what we want. Finally, the thesis is using the DSP TMS320LF2407A to reach the digital-control inverter system. The experimental results show that the inverter system can supply 300W, and the output voltage is 110Vrms/60Hz.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 研究動機 1 1-2 研究背景 2 1-3 研究方法 5 1-4 論文大綱 6 第二章 變流器架構與調變方式 7 2-1 前言 7 2-2 變流器電路架構 7 2-3 變流器調變技術 10 2-3-1 正弦式脈波寬度調變 10 2-3-2 磁滯調變 12 2-4 雙組轉換器介紹 13 2-4-1 降壓型變流器 13 2-4-2 昇壓型變流器 15 2-4-3 昇降壓型變流器 16 2-4-4 各架構變流器之整理 17 第三章 系統電路分析與設計 18 3-1 前言 18 3-2 整體系統架構 18 3-3 變流器系統分析 19 3-3-1 變流器動作原理 19 3-3-2 變流器大訊號分析 26 3-3-3 變流器控制機制 33 3-4 降壓轉換器分析 34 3-4-1 降壓轉換器動作原理 35 3-4-2 降壓轉換器控制機制 37 第四章 系統軟體規劃與硬體電路設計 39 4-1 前言 39 4-2 系統軟體規劃 39 4-2-1 數位信號處理器(TMS320LF2407A)簡介 40 4-2-2 脈波寬度調變設置 42 4-2-3 系統程式規劃 43 4-3 系統硬體電路設計 49 4-3-1 功率開關驅動電路 49 4-3-2 直流電壓感測電路 50 4-3-3 交流電壓感測電路 51 4-3-4 電流感測電路 52 4-4 整體系統架構電路圖 53 第五章 系統實驗與結果 54 5-1 前言 54 5-2 系統規格 54 5-3 開關調變波形 56 5-4 前級降壓轉換器 57 5-4-1 輸入電壓變動實驗 57 5-4-2 工作區實驗 58 5-4-3 負載變動實驗 60 5-5 單相變流器 62 5-5-1 單相變流器SIMPLIS模擬 62 5-5-2 工作區實驗 63 5-5-3 負載變動實驗 66 第六章 結論與未來研究方向 68 6-1 結論 68 6-2 未來研究方向 69 參考文獻 70

    [1] J. C. Diehj and A. Mestre, “Ecodesign and renewable energy: how to integrate renewable energy technologies into consumer products,” Fourth Int. Symposium Environmentally Conscious Design Inverse Manuf., 2005, pp. 282-288.
    [2] A. D. Aquila, M. Liserre, R. A. Mastromauro, V. M. Moreno, and A. Pigazo, “Wavelet-based islanding detection in grid-connected PV systems,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 561-571, 2009.
    [3] 張勇、崔蓓蓓和邱宇晨,潮流發電-一種開發潮汐能的新方法,上海市電力公司,2009年。
    [4] 吳財福、陳裕愷和張健軒,太陽光電能供電與照明系統綜論第二版,全華圖書股份有限公司,2007年。
    [5] P. W. Lee, Y. Z. Lee, and B. T. Lin, “Power distribution systems for future homes,” in Proc. IEEE Int. Conf. Power Electronics Drive System, 1999, pp. 1140-1146.
    [6] 林傳昇和李佩謙,數位訊號處理器(DSP)簡介與應用,全華科技圖書股份有限公司,1996年
    [7] 黃永達,信號與系統(精簡本),東華書局,1999年。
    [8] 張天錫,電力電子學第三版,東華書局,2004年。
    [9] 林右鎗,具電流修正控制之市電併聯型變流器,國立成功大學電機工程學系碩士論文,2010年。
    [10] 林軒,具弦波調變與空間相量調變之三相變流器系統,國立成功大學電機工程學系碩士論文,2011年。
    [11] 黃淑萱,應用於潮流發電之數位控制三相電源轉換系統,國立成功大學電機工程學系碩士論文,2011年。
    [12] 詹智強,直接變換式交流至交流補償轉換器之研究,國立成功大學電機工程學系碩士論文,1996年。
    [13] 江錫津,應用空間向量脈寬調變技術之數位式高功因單相/三相轉換器,國立雲林科技大學電機工程系碩士論文,2003年。
    [14] J. Almazan, N. Vazquez, C. Hernandez, and J. Arau, “A comparison between the buck, boost and buck-boost inverters,” in Proc. IEEE Power Electronics Congress, 2000, pp. 341-346.
    [15] S. R. H. Amrei, D. G. Xu, and Y. Q. Lang, “High power DC-DC converters under large load and input voltage variations: a new approach,” in Proc. IEEE Int. Conf. Power Engineering, 2005, vol. 2, pp. 815-820.
    [16] Z. Yao, L. Xiao, and Y. Yan, “Dual-buck full-bridge inverter with hysteresis current control,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3153-3160, 2009.
    [17] Y. Ma. B. Qiu, and Q. Cong, “Research on single-stage inverter based on bi-directional buck DC converter,” in Proc. IEEE Power Electronics Distributed Generation System, 2010, pp. 299-303.
    [18] R. Tymerski, V. Vorperain, F. C. Y. Lee, and W. T. Baumann, “Nonlinear modeling of the PWM switch,” IEEE Trans. Power Electron., vol. 4, no. 2, pp. 225-233, 1989.
    [19] A. Prodic, D. Maksimovic, and R. W. Erickson, “Design and implementation of a digital PWM controller for a high-frequency switching DC-DC power converter,” in Proc. IEEE Conf. IECON, 2001, vol. 2, pp. 893-898.
    [20] S. Chattopadhyay and S. Das, “A digital current-mode control technique for DC-DC converters,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1718-1726, 2006.
    [21] Y. Y. Tzou, “DSP-based fully digital control of a PWM DC-AC converter for AC voltage regulation,” in Proc. IEEE PESC, 1995, pp. 139-144.
    [22] A. I. Maswood, “A switching loss study in SPWM IGBT inverter,” in Proc. IEEE Int. Conf. Power Energy, 2008, pp. 609-613.
    [23] 黃河,直接電流控制法之併聯電力系統換流器之研製,國立成功大學電機工程學系碩士論文,2009年。
    [24] P. W. Lee, Y. Z. Lee, and B. T. Lin, “Voltage mode control of single phase boost inverter,” in Proc. IEEE Int. Conf. Electrical Computer Engineering, 2008, pp. 665-670.
    [25] 董勝源,DSP TMS320LF2407與C語言控制實習,匯高出版社,2004年。
    [26] 新華電腦,DSP從此輕鬆跑(以TI DSP 320LF 2407A為主題),台科大圖書股份有限公司,2003年。
    [27] 林容益,TMS320F240x組合語言及C語言多功能控制應用,全華科技圖書股份有限公司,2005年。
    [28] F. Xu, H. Ma, B. Liu, and L. Dong, “Third-order sliding mode controller for buck inverter,” in Proc. IEEE IECON, 2008, pp. 1021-106.
    [29] R. O. Caceres and I. Barbi, “A boost DC-AC converter: analysis, design, and experimentation,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 134-141, 1999.
    [30] Z. Wei, D. D. C. Lu, and V. G. Agelidis, “Current control of grid-connected boost inverter with zero steady-state error,” IEEE Trans. Power Electron., vol. 26, no. 10, pp. 2825-2834, 2011.
    [31] D. Cortes, N. Vazquez, and J. Alvarez-Gallegos, “Dynamical sliding-mode control of the boost inverter,” IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3467-3476, 2009.
    [32] M. Jang, M. Ciobotaru, and V. G. Agelidis, “Grid-connected fuel cell system based on a boost-inverter with a battery back-up unit,” in Proc. IEEE Int. Conf. Power Electronics, 2011, pp. 1637-1644.
    [33] J. Minsoo and V. G. Agelidis, “A minimum power-processing-stage fuel-cell energy system based on a boost-inverter with a bidirectional backup battery storage,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1568-1577, 2011.
    [34] P. Sanchis Gurpide, O. Alonso Sadaba, L. Marroyo Palomo, T. Meynard, and E. Lefeuvre, “A new control strategy for the boost DC-AC inverter,” in Proc. IEEE PESC, 2001, vol. 2, pp. 974-979.
    [35] P. Sanchis, A. Ursaea, E. Gubia, and L. Marroyo, “Boost DC-AC inverter: a new control strategy,” IEEE Trans. Power Electron., vol. 20, no. 2, pp. 343-353, 2005.
    [36] B. Kalaivani, V. Kumar Chinnaiyan, and J. Jerome, “A novel control strategy for the boost DC-AC inverter,” in Proc. IEEE Int. Conf. India Power Electronics, 2006, pp. 341-344.
    [37] Y. Fang and X. Ma, “A novel PV microinverter with coupled inductors and double-boost topology,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3139-3147, 2010.
    [38] R. O. Caceres, W. M. Garcia, and O. E. Camacho, “A buck-boost DC-AC converter: operation, analysis, and control,” in Proc. IEEE Int. Power Electronics Congress, 1998, pp. 126-131.
    [39] M. Jang, M. Ciobotaru, and V. G. Agelidis, “A single-stage fuel cell energy system based on a buck-boost inverter with a backup energy storage unit,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2825-2834, 2012.
    [40] P. Sanchis, A. Ursua, E. Gubia, and L. Marroyo, “Buck-boost DC-AC inverter: proposal for a new control strategy,” in Proc. IEEE PESC, 2004, vol. 5, pp. 3994-3998.
    [41] P. Sanchis, A. Ursua, E. Gubia, and L. Marroyo, “Design and experimental operation of a control strategy for the buck-boost DC-AC inverter,” IEE Proc. Electric Power Appl., vol. 152, no. 3, pp. 660-668, 2005.
    [42] J. Zhu, L. Xiang, and S. Liu, “Double-loop control and stability analysis based on three-phase buck-boost inverter,” in Proc. IEEE Int. Conf. Electrical Machines System, 2008, pp. 1673-1676.
    [43] J. Knight, S. Shirsavar, and W. Holderbaum, “An improved reliability Cuk based solar inverter with sliding mode control,” IEEE Trans. Ind. Electron., vol. 21, no. 4, pp. 1107-1115, 2006.
    [44] Y. Zhou, “Study of buck-boost photovoltaic inverter based on discrete sliding mode control strategy,” in Proc. IEEE Mechanic Automation Control Engineering, 2011, pp. 1643-1647.
    [45] R. X. Gong, L. L. Xie, K. Wang, and C. D. Ning, “A novel modeling method of nonideal buck-boost converter in DCM,” in Proc. IEEE Int. Conf. Information Computing, 2010, vol. 3, pp. 182-185.
    [46] 盧明智和黃敏祥,OP Amp 應用+實驗模擬,全華科技圖書股份有限公司,1995年。
    [47] 梁適安,交換式電源供給器之理論與實務設計,全華圖書股份有限公司,2008年。
    [48] 李嘉猷、張幼旻、沈紘宇,“應用數位信號處理器於雙組轉換器實現變流器特性之研究,” 中華民國第三十二屆電力工程研討會論文集,2011年,799-803頁。

    下載圖示 校內:2015-08-20公開
    校外:2015-08-20公開
    QR CODE