簡易檢索 / 詳目顯示

研究生: 許宗賢
Hsu, Tsung-Hsien
論文名稱: 低損耗超低溫共燒陶瓷材料微波介電特性應用於5G/6G 先進高頻通訊元件系統
Microwave Dielectric Properties of Low-Loss and ULTCC Materials for Advanced High-Frequency Communication Components in 5G/6G Systems
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 167
中文關鍵詞: 超低溫共燒陶瓷低損耗微波介電特性天線濾波器5G/6G通訊系統
外文關鍵詞: Ultra-Low-Temperature Co-fired Ceramics, Low Loss, Microwave Dielectric Properties, Antennas, Filters, 5G/6G Communication Systems
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著5G時代的來臨,基站和天線的研究已成為當今最重要的課題之一。這些研究主要涵蓋了兩個頻段:Sub-6GHz(0.45–6GHz)和毫米波(24–52GHz)。在這項研究中,我們成功地開發了一種超低溫共燒陶瓷材料,稱為AMO(A=Li、Co、Ag;M=V、Mo、W)。通過微量取代Mg和Zn,本研究精心優化了其介電特性,同時大幅降低了燒結溫度。這一突破性的成就彰顯了微量取代對燒結劑的深遠影響,可實現顯著的成本降低,同時保持材料性能的完整性。此外,還針對影響材料性能的內在和外在因素進行了全面的研究,確保了研究的系統性和可靠性。最後,我們還開展了基於這些材料的濾波器和陣列天線的研發和全面研究。本論文將系統性地探討四個部分:
    A. 釩酸鹽陶瓷研究:
    釩-基陶瓷與Li+元素結合,表現出極低的燒結溫度和生產成本。透過微量的Mg2+或Zn2+取代Li+,特別是在520°C下,明顯提高了微波介電性能,Li0.98Mg0.01VO3表現出優秀的特性,包括εr為9.78,Q×f為45,600 GHz,τf為–45 ppm/°C;同時,Li0.98Zn0.01VO3的εr為9.25,Q×f為33,100 GHz,τf為-53.6 ppm/°C。值得注意的是,Li0.98Mg0.01VO3與鋁電極具有相當優異的化學相容性,並且在520°C下添加2 mol%的TiO2後,其特性進一步提升,εr為9.2,Q×f為30,000 GHz,τf為–2.8 ppm/°C。

    B. 含銀的釩酸鹽陶瓷研究:
    本研究成功利用Ag的添加促使新型AgMgVO4陶瓷的形成,其具有優異的微波介電性能。在630 °C下燒結的陶瓷達到高相對密度(96.2%),展現出優秀的微波介電性能,包括εr約為14.89,Q×f約為19,400 GHz,τf約為–2.71 ppm/°C。此外,這些陶瓷與鋁電極表現出良好的化學相容性。
    C. 鎢酸鹽陶瓷研究:
    鎢酸鹽陶瓷的燒結溫度相對較高,但透過添加熔點較低的Li元素,可以實現較低的燒結溫度。此外,通過使用0.05 mol%的Mg2+或0.07 mol%的Zn2+取代Li+,Li2WO4陶瓷的燒結溫度從660 °C降至540 °C。總結陶瓷的綜合介電性能εr為6.2和5.8,Q×f為76,000和68,000 GHz,τf分別為–94和–86 ppm/°C。
    D. 鉬酸鹽陶瓷研究:
    鉬酸鹽陶瓷具有超低的燒結溫度、低吸濕性和具成本效益的優勢。在690°C下燒結的純CoMoO4陶瓷表現出εr = 8.27,Q×f = 64,000 GHz和τf = –96 ppm/°C的介電性能。部分Mg2+取代Co2+有效地提高了陶瓷的緻密度,降低了介電損耗並降低了燒結溫度。在630 °C下燒結的Co0.95Mg0.05MoO4陶瓷表現出卓越的介電性能,包含εr為8.42,Q×f為71,000 GHz,τf為–62.27 ppm/°C,同時保持與鋁電極的相容性。
    最後,我們成功地使用HFSS軟體模擬並應用這些陶瓷材料於5G/6G高頻通訊元件,如介質濾波器和天線。這些材料以其低損耗的微波介電性能而著稱,展現出卓越的潛力,有望成為ULTCC陶瓷的首選選項之一。

    The onset of the 5G era has elevated research on base stations and antennas to a paramount domain. This research primarily spans across two frequency bands: Sub-6GHz (0.45–6GHz) and millimeter-wave (24–52GHz). Within this study, we have achieved the successful development of ULTCC material, denominated as AMO (A=Li, Co, Ag; M=V, Mo, W). By incorporating minor substitutions of Mg and Zn, we meticulously optimized its dielectric properties, concurrently effecting a significant reduction in sintering temperature. This groundbreaking accomplishment underscores the profound influence of minor substitutions on sintering agents, leading to substantial cost reduction while preserving material performance integrity. Moreover, we conducted an exhaustive examination of both intrinsic and extrinsic factors that impact material performance, ensuring the systematic and dependable nature of this research. Furthermore, we embarked on the development and comprehensive study of filters and array antennas based on these materials. This thesis systematically dissects and investigates four components:
    A. Vanadium-Based Ceramics:
    Vanadium-based ceramics, in conjunction with Li elements, manifest exceedingly low sintering temperatures and production costs. The substitution of minute quantities of Mg or Zn for Li has yielded remarkable enhancements in microwave dielectric properties, particularly at 520 °C. Li0.98Mg0.01VO3 demonstrated exemplary characteristics, featuring εr of 9.78, Q×f of 45,600 GHz, and τf of –45 ppm/°C. Meanwhile, Li0.98Zn0.01VO3 exhibited εr of 9.25, Q×f of 33,100 GHz, and τf of –53.6 ppm/°C. Notably, Li0.98Mg0.01VO3 exhibited compatibility with aluminum electrodes, and the introduction of 2 mol% TiO2 further amplified its properties at 520 °C, with εr of 9.2, Q×f of 30,000 GHz, and τf of –2.8 ppm/°C.
    B. Silver-Containing Vanadium-Based Ceramics:
    In this study, the introduction of Ag has successfully facilitated the formation of novel AgMgVO4 ceramics, characterized by remarkable microwave dielectric properties. Ceramics sintered at 630 °C have achieved high relative density (96.2%) and exhibited outstanding microwave dielectric properties, including εr ~14.89, Q×f ~19,400 GHz, and τf ~–2.71 ppm/°C. Furthermore, these ceramics have demonstrated excellent chemical compatibility with aluminum electrodes.
    C. Tungsten-Based Ceramics:
    Tungsten-based ceramics, despite their inherently higher sintering temperatures compared to vanadium-based ceramics, can achieve lower sintering temperatures through the incorporation of Li elements with lower melting points. In addition, the substitution of 0.05 mol% of Mg2+ or 0.07 mol% of Zn2+ for Li+ has led to a reduction in the sintering temperature of Li2WO4 ceramic from 660 °C to 540 °C. The comprehensive dielectric properties of the resulting ceramics encompass εr of 6.2 and 5.8, Q×f of 76,000 and 68,000 GHz, and τf of –94 and –86 ppm/°C, respectively.

    D. Molybdenum-Based Ceramics:
    Molybdenum-based ceramics boast the advantages of ultra-low sintering temperatures, low moisture absorption, and cost-effectiveness. Pure CoMoO4 ceramics sintered at 690 °C have exhibited dielectric properties including εr = 8.27, Q×f = 64,000 GHz, and τf = –96 ppm/°C. The strategic substitution of Mg2+ for Co2+ has effectively augmented ceramic densification, reduced dielectric loss, and decreased the sintering temperature. Co0.95Mg0.05MoO4 ceramics sintered at 630 °C have showcased outstanding dielectric properties with εr = 8.42, Q×f = 71,000 GHz, and τf = –62.27 ppm/°C, all while maintaining compatibility with aluminum electrodes.
    Finally, these ceramic materials have been successfully simulated and employed in 5G/6G high-frequency communication components such as dielectric filters and antennas using HFSS software. These materials, distinguished by their low-loss microwave dielectric properties, exhibit significant potential as the favored options for ULTCC.

    摘要 I SUMMARY III 致謝 VI Contents VII Table Captions X Figure Captions XII Chapter 1. Introduction 1 1.1 Development and Application of Low-Temperature Ceramic Materials (LTCC) 3 1.2 Review of Ultra-Low Temperature Co-Fire Ceramic Materials. 5 Chapter 2. Theory 11 2.1 Sintering of Ceramic Materials 11 2.1.1 Types of Material Sintering 11 2.1.2 The Process of Material Sintering 15 2.1.3 Diffusion Mechanisms in Material Sintering 17 2.2 Dielectric Resonator 18 2.3 Characteristics of Microwave Dielectric Materials 22 2.3.1 Dielectric constant (εr ) 22 2.3.2 Quality factor (Q) 28 2.3.3 Temperature coefficient of resonant frequency (τf) 30 2.3.4 Factors Affecting Dielectric Properties 31 2.4 The Principles of Raman Spectroscopy and Molecular Vibrational Modes 37 2.4.1 Raman spectra 37 2.4.2 Vibrational Modes 37 2.5 Theory of Filter 39 2.5.1 Introduction to Filters 39 2-5-2 Types of filters and their frequency responses. 41 2.6 Theory of Antenna 45 2.6.1 Introduction to Antennas 45 2.6.2 Types and Applications of Antennas 47 2.7 Theory of Microstrip 49 2.7.1 Introduction to Microstrip Transmission 49 2.7.2 Transmission Modes of Microstrip- TEM Wave 50 2.7.3 The calculation of various parameters of microstrip 51 2.7.4 Microstrip Line Discontinuities 53 2.7.5 Losses in Microstrip Lines 59 Chapter 3. Experimental and Measurement Methods 61 3.1 Fabrication of Microwave Dielectric Materials 61 3.1.1 Powder Preparation and Ball Milling 62 3.1.2 Powder Drying and Phase Calcination 62 3.1.3 Addition of Binder and Sieving 62 3.1.4 Green Body Formation, Binder Removal, and Sintering 63 3.2 Measurement and Analysis of Microwave Dielectric Materials 64 3.2.1 X-ray Analysis 64 3.2.2 SEM Analysis 64 3.2.3 Raman Spectroscopy Analysis 65 3.2.4 Density Measurement 66 3.2.5 Measurement and Methodology for Microwave Dielectric Properties 66 Chapter 4. Development of Microwave Dielectric Materials for ULTCC Applications. 69 4.1. Low-loss microwave dielectric of novel Li1-2xMxVO3 (M = Mg, Zn) (x = 0–0.09) ceramics for ULTCC applications 69 4.2. Ultra-low temperature sintering and temperature stable microwave dielectrics of phase pure AgMgVO4 ceramics 86 4.3. Low-loss microwave dielectrics of Li2(1–x)MxWO4 (M= Mg, Zn; x= 0.01–0.09) for ULTCC applications 97 4.4. Microwave dielectric properties of ultra-low temperature sintered Co1-xMgxMoO4 (x = 0–0.09) ceramics for 5G array antenna applications at millimeter-wave frequency. 111 Chapter 5. Conclusion 132 References 135

    [1] M.Z. Chowdhury, M. Shahjalal, M.K. Hasan, Y.M. Jang, The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges, Applied Sciences 9(20) (2019) 4367.
    [2] F. Salahdine, T. Han, N. Zhang, 5G, 6G, and Beyond: Recent advances and future challenges, Annals of Telecommunications (2023) 1-25.
    [3] F. Irram, M. Ali, M. Naeem, S. Mumtaz, Physical layer security for beyond 5G/6G networks: Emerging technologies and future directions, Journal of Network and Computer Applications 206 (2022) 103431.
    [4] C. De Alwis, A. Kalla, Q.-V. Pham, P. Kumar, K. Dev, W.-J. Hwang, M. Liyanage, Survey on 6G frontiers: Trends, applications, requirements, technologies and future research, IEEE Open Journal of the Communications Society 2 (2021) 836-886.
    [5] W. Hong, Z.H. Jiang, C. Yu, D. Hou, H. Wang, C. Guo, Y. Hu, L. Kuai, Y. Yu, Z. Jiang, The role of millimeter-wave technologies in 5G/6G wireless communications, IEEE Journal of Microwaves 1(1) (2021) 101-122.
    [6] H. Xiang, J. Kilpijärvi, S. Myllymäki, H. Yang, L. Fang, H. Jantunen, Spinel-olivine microwave dielectric ceramics with low sintering temperature and high quality factor for 5 GHz wi-fi antennas, Applied Materials Today 21 (2020) 100826.
    [7] F. Li, R. Tu, J. Han, S. Zhang, M. Liu, X. Lu, Performance research of real-time kinematic/5G combined positioning model, Measurement Science and Technology 34(3) (2022) 035115.
    [8] D. Wang, D. Chen, B. Song, N. Guizani, X. Yu, X. Du, From IoT to 5G I-IoT: The next generation IoT-based intelligent algorithms and 5G technologies, IEEE Communications Magazine 56(10) (2018) 114-120.
    [9] O.P. Falade, M. Ur‐Rehman, X. Yang, G.A. Safdar, C.G. Parini, X. Chen, Design of a compact multiband circularly polarized antenna for global navigation satellite systems and 5G/B5G applications, International Journal of RF and Microwave Computer‐Aided Engineering 30(6) (2020) e22182.
    [10] F. Guo, F.R. Yu, H. Zhang, H. Ji, V.C. Leung, X. Li, An adaptive wireless virtual reality framework in future wireless networks: A distributed learning approach, IEEE Transactions on Vehicular Technology 69(8) (2020) 8514-8528.
    [11] X. Qiao, P. Ren, G. Nan, L. Liu, S. Dustdar, J. Chen, Mobile web augmented reality in 5G and beyond: Challenges, opportunities, and future directions, China Communications 16(9) (2019) 141-154.
    [12] A.S. Shah, M.A. Karabulut, H. Ilhan, U. Tureli, Performance optimization of cluster-based MAC protocol for VANETs, IEEE Access 8 (2020) 167731-167738.
    [13] S. Latif, J. Qadir, S. Farooq, M.A. Imran, How 5G wireless (and concomitant technologies) will revolutionize healthcare?, Future Internet 9(4) (2017) 93.
    [14] X. You, C. Zhang, X. Tan, S. Jin, H. Wu, AI for 5G: Research directions and paradigms, Science China Information Sciences 62 (2019) 1-13.
    [15] L. Wang, J. Yang, W. Cheng, J. Zou, D. Zhao, Progress on polymer composites with low dielectric constant and low dielectric loss for high-frequency signal transmission, Frontiers In Materials 8 (2021) 774843.
    [16] L.C. Sengupta, S. Sengupta, Breakthrough advances in low loss, tunable dielectric materials, Materials Research Innovations 2(5) (1999) 278-282.
    [17] C.-C. Kuo, Y.-C. Lin, Y.-C. Chen, P.-H. Wu, S. Ando, M. Ueda, W.-C. Chen, Correlating the molecular structure of polyimides with the dielectric constant and dissipation factor at a high frequency of 10 GHz, ACS Applied Polymer Materials 3(1) (2020) 362-371.
    [18] M. Kono, H. Takagi, T. Tatekawa, H. Tamura, High Q dielectric resonator material with low dielectric constant for millimeter-wave applications, Journal of the European Ceramic Society 26(10-11) (2006) 1909-1912.
    [19] L. Chettri, R. Bera, A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems, IEEE Internet of Things Journal 7(1) (2019) 16-32.
    [20] E.G. Larsson, O. Edfors, F. Tufvesson, T.L. Marzetta, Massive MIMO for next generation wireless systems, IEEE communications magazine 52(2) (2014) 186-195.
    [21] F. Rusek, D. Persson, B.K. Lau, E.G. Larsson, T.L. Marzetta, O. Edfors, F. Tufvesson, Scaling up MIMO: Opportunities and challenges with very large arrays, IEEE signal processing magazine 30(1) (2012) 40-60.
    [22] S. Han, I. Chih-Lin, Z. Xu, C. Rowell, Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G, IEEE Communications Magazine 53(1) (2015) 186-194.
    [23] M. Shafi, A.F. Molisch, P.J. Smith, T. Haustein, P. Zhu, P. De Silva, F. Tufvesson, A. Benjebbour, G. Wunder, 5G: A tutorial overview of standards, trials, challenges, deployment, and practice, IEEE journal on selected areas in communications 35(6) (2017) 1201-1221.
    [24] M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review, International Materials Reviews 53(2) (2008) 57-90.
    [25] Q. Zeng, W. Li, J.l. Shi, J.k. Guo, M.w. Zuo, W.j. Wu, A new microwave dielectric ceramic for LTCC applications, Journal of the American Ceramic Society 89(5) (2006) 1733-1735.
    [26] B. Huang, T. Xia, F. Shang, G. Chen, A new BaB2O4 microwave dielectric ceramic for LTCC application, Journal of the European Ceramic Society 43(14) (2023) 6107-6111.
    [27] X. Wu, J. Xu, Y. Jing, Y. Li, H. Su, Medium K and temperature-stable Co2+-substituted LiNb0. 6Ti0. 5O3 microwave dielectric ceramics for LTCC miniaturized applications, Journal of Alloys and Compounds 929 (2022) 167352.
    [28] M. Zhong, H. Su, X. Jing, Y. Li, Q. Lu, Y. Jing, Crystal structure and microwave dielectric properties of Li2Mg0.6−xCoxZn0.4SiO4 ceramic for LTCC applications, Ceramics International 46(9) (2020) 13095-13101.
    [29] D. Wang, L. Li, M. Du, Y. Zhan, A low-sintering temperature microwave dielectric ceramic for 5G LTCC applications with ultralow loss, Ceramics International 47(20) (2021) 28675-28684.
    [30] S. Li, C. Li, M. Mao, K. Song, Y. Iqbal, A. Khesro, S.S. Faouri, Z. Lu, B. Liu, S. Sun, High Q× f values of Zn-Ni co-modified LiMg0.9Zn0.1-xNixPO4 microwave dielectric ceramics for 5G/6G LTCC modules, Journal of the European Ceramic Society 42(13) (2022) 5684-5690.
    [31] D.C. Daly, L.C. Fujino, K.C. Smith, Through the looking glass-2020 edition: Trends in solid-state circuits from ISSCC, IEEE solid-state circuits magazine 12(1) (2020) 8-24.
    [32] K. Van Gasse, J. Verbist, H. Li, G. Torfs, J. Bauwelinck, G. Roelkens, Silicon photonics radio-over-fiber transmitter using GeSi EAMs for frequency up-conversion, IEEE Photonics Technology Letters 31(2) (2018) 181-184.
    [33] Z.Y. Zou, X.Q. Song, L. Jiang, C.L. Yuan, W.Z. Lu, Y.M. Hu, W. Lei, Crystal structure and ferroelectric evidence of BaZnSi3O8, a low‐permittivity microwave dielectric ceramic, Chemistry–A European Journal 27(19) (2021) 5992-5998.
    [34] A.S.B. Sombra, J.-Z. Su, Design of a High-Efficiency and-Gain Antenna Using Novel Low-Loss, Temperature-Stable Li2Ti1−x(Cu1/3Nb2/3)xO3 Microwave Dielectric Ceramics.
    [35] J. Li, C. Zhang, H. Liu, T. Qiu, C. Fan, Structure, morphology, and microwave dielectric properties of SmAlO3 synthesized by stearic acid route, Journal of Advanced Ceramics 9 (2020) 558-566.
    [36] H. Ohsato, T. Tsunooka, T. Sugiyama, K.-i. Kakimoto, H. Ogawa, Forsterite ceramics for millimeterwave dielectrics, Journal of electroceramics 17 (2006) 445-450.
    [37] G. Chen, M. Hou, Y. Bao, C. Yuan, C. Zhou, H. Xu, Silver co‐firable Li2ZnTi3O8 microwave dielectric ceramics with LZB glass additive and TiO2 dopant, International Journal of Applied Ceramic Technology 10(3) (2013) 492-501.
    [38] G.-K. Choi, J.-R. Kim, S.H. Yoon, K.S. Hong, Microwave dielectric properties of scheelite (A= Ca, Sr, Ba) and wolframite (A= Mg, Zn, Mn) AMoO4 compounds, Journal of the European Ceramic Society 27(8-9) (2007) 3063-3067.
    [39] L. Cheng, P. Liu, S.-X. Qu, H.-W. Zhang, Microwave dielectric properties of AWO4 (A= Ca, Ba, Sr) ceramics synthesized via high energy ball milling method, Journal of alloys and compounds 581 (2013) 553-557.
    [40] R. Pullar, S. Farrah, N.M. Alford, MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics, Journal of the European Ceramic Society 27(2-3) (2007) 1059-1063.
    [41] G.-G. Yao, C.-J. Pei, J.-G. Xu, P. Liu, J.-P. Zhou, H.-W. Zhang, Microwave dielectric properties of CaV2O6 ceramics with low dielectric loss, Journal of Materials Science: Materials in Electronics 26 (2015) 7719-7722.
    [42] J. Chen, C. Li, H. Xiang, Y. Tang, L. Fang, SrV2O6: An ultralow-firing microwave dielectric ceramic for LTCC applications, Materials Research Bulletin 100 (2018) 377-381.
    [43] C.-L. Huang, J.-L. Huang, M.-H. Tsai, Ultra-low temperature sintering and temperature stable microwave dielectrics of (Mg1-xZnx)V2O6 (x= 0–0.09) Ceramics, Journal of Asian Ceramic Societies 9(1) (2021) 106-112.
    [44] U.A. Neelakantan, S.E. Kalathil, R. Ratheesh, Structure and microwave dielectric properties of ultralow‐temperature cofirable BaV2O6 ceramics, European Journal of Inorganic Chemistry 2015(2) (2015) 305-310.
    [45] M.R. Joung, J.S. Kim, M.E. Song, S. Nahm, J.H. Paik, B.H. Choi, Formation and microwave dielectric properties of the Mg2V2O7 ceramics, Journal of the American Ceramic Society 92(7) (2009) 1621-1624.
    [46] E. Suresh, R. Ratheesh, Structure and microwave dielectric properties of glass free low temperature co-firable SrMV2O7 (M= Mg, Zn) ceramics, Journal of Alloys and Compounds 808 (2019) 151641.
    [47] J. Dhanya, A. Basiluddeen, R. Ratheesh, Synthesis of ultra low temperature sinterable Na2Zn5(MoO4)6 ceramics and the effect of microstructure on microwave dielectric properties, Scripta Materialia 132 (2017) 1-4.
    [48] C.L. Huang, J.N. Liou, M.H. Tsai, W.C. Huang, Microwave dielectric properties of Li2M2(MoO4)3 (M= Co, Ni) for LTCC applications, International Journal of Ceramic Engineering & Science 2(3) (2020) 130-139.
    [49] W.B. Li, D. Zhou, H.H. Xi, L.X. Pang, X. Yao, Structure, infrared reflectivity and microwave dielectric properties of (Na0.5La0.5)MoO4–(Na0.5Bi0.5)MoO4 ceramics, Journal of the American Ceramic Society 99(6) (2016) 2083-2088.
    [50] D. Zhou, C.A. Randall, L.X. Pang, H. Wang, J. Guo, G.Q. Zhang, X.G. Wu, L. Shui, X. Yao, Microwave dielectric properties of Li2WO4 ceramic with ultra‐low sintering temperature, Journal of the American Ceramic Society 94(2) (2011) 348-350.
    [51] H. Xiang, C. Li, Y. Tang, L. Fang, Two novel ultralow temperature firing microwave dielectric ceramics LiMVO6 (M= Mo, W) and their chemical compatibility with metal electrodes, Journal of the European Ceramic Society 37(13) (2017) 3959-3963.
    [52] D. Zhou, W.B. Li, L.X. Pang, J. Guo, Z.M. Qi, T. Shao, Z.X. Yue, X. Yao, Sintering behavior and dielectric properties of ultra‐low temperature fired silver molybdate ceramics, Journal of the American Ceramic Society 97(11) (2014) 3597-3601.
    [53] Z. Di, P. Li-Xia, Q. Ze-Ming, J. Biao-Bing, Y. Xi, Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal, Scientific reports 4(1) (2014) 5980.
    [54] D. Zhou, J. Li, L.-X. Pang, D.-W. Wang, I.M. Reaney, Novel water insoluble (NaxAg2−x)MoO4 (0≤ x≤ 2) microwave dielectric ceramics with spinel structure sintered at 410 degrees, Journal of Materials Chemistry C 5(24) (2017) 6086-6091.
    [55] G.q. Zhang, J. Guo, H. Wang, Ultra‐low temperature sintering microwave dielectric ceramics based on Ag2O–MoO3 binary system, Journal of the American Ceramic Society 100(6) (2017) 2604-2611.
    [56] D. Zhou, L.X. Pang, H.D. Xie, J. Guo, B. He, Z.M. Qi, T. Shao, X. Yao, C.A. Randall, Crystal structure and microwave dielectric properties of an ultralow‐temperature‐fired (AgBi)0.5WO4 ceramic, European Journal of Inorganic Chemistry 2014(2) (2014) 296-301.
    [57] Y.-T. Huang, T.-H. Hsu, C.-L. Huang, Low-loss and ultra-low temperature sintering microwave dielectrics of pure and Ag-modified K2Mg2(MoO4)3 ceramics, Journal of the European Ceramic Society 42(15) (2022) 7004-7009.
    [58] Y.-L. Hsieh, T.-H. Hsu, C.-L. Huang, Microwave dielectric properties of MnTeMoO6 ceramic and lowering its dielectric loss by using Mg-substitution in the A-site, Journal of Alloys and Compounds 947 (2023) 169636.
    [59] C.L. Huang, C.H. Su, C.M. Chang, High Q Microwave Dielectric Ceramics in the Li2(Zn1−xAx)Ti3O8 (A= Mg, Co; x= 0.02–0.1) System, Journal of the American Ceramic Society 94(12) (2011) 4146-4149.
    [60] C.-L. Huang, S.-H. Huang, Low-loss microwave dielectric ceramics in the (Co1−xZnx)TiO3 (x= 0–0.1) system, Journal of alloys and compounds 515 (2012) 8-11.
    [61] T.-H. Hsu, C.-L. Huang, Low-loss microwave dielectrics of Li2(1–x)MxWO4 (M= Mg, Zn; x= 0.01–0.09) for ULTCC applications, Materials Science in Semiconductor Processing 158 (2023) 107355.
    [62] R. Nelsen, . Springer, New York, An Introduction to Copulas (1999).
    [63] R. Raj, R. Tsai, J.-G. Wang, C. Chyung, Superplastic flow in ceramics enhanced by a liquid phase, Deformation of Ceramic Materials II (1984) 353-378.
    [64] K. Hwang, R. German, F. Lenel, Capillary forces between spheres during agglomeration and liquid phase sintering, Metallurgical Transactions A 18 (1987) 11-17.
    [65] R.M. German, P. Suri, S.J. Park, Liquid phase sintering, Journal of materials science 44 (2009) 1-39.
    [66] R.B. Heady, J.W. Cahn, An analysis of the capillary forces in liquid-phase sintering of spherical particles, Metallurgical transactions 1 (1970) 185-189.
    [67] J.W. Cahn, R. Heady, Analysis of Capillary Forces in Liquid‐Phase Sintering of Jagged Particles, Journal of the American Ceramic Society 53(7) (1970) 406-409.
    [68] R.M. German, Sintering theory and practice, 1996.
    [69] S.-J.L. Kang, Sintering: densification, grain growth and microstructure, Elsevier2004.
    [70] D. Uskoković, H. Exner, The kinetics of contact formation during sintering by diffusion mechanisms, Sintering Key Papers, Springer1990, pp. 111-146.
    [71] D.L. Johnson, I.B. Cutler, Diffusion sintering: I, initial stage sintering models and their application to shrinkage of powder compacts, Journal of the American Ceramic Society 46(11) (1963) 541-545.
    [72] D.M. Pozar, Microwave engineering, John wiley & sons2011.
    [73] H. Arwin, M. Poksinski, K. Johansen, Total internal reflection ellipsometry: principles and applications, Applied optics 43(15) (2004) 3028-3036.
    [74] J. Jean, C. Lin, Coarsening of tungsten particles in W-Ni-Fe alloys, Journal of materials science 24 (1989) 500-504.
    [75] D. Kajfez, Basic principles give understanding of dielectric waveguides and resonators, Microwave Syst. News 13 (1983) 152-161.
    [76] D. Kajfez, A.W. Glisson, J. James, Computed modal field distributions for isolated dielectric resonators, IEEE transactions on Microwave Theory and Techniques 32(12) (1984) 1609-1616.
    [77] 張盛富, 戴明鳳, and 物理學, 無線通信之射頻被動電路設計, 全華圖書, 2011.
    [78] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 2001.
    [79] A.J. Moulson, J.M. Herbert, Electroceramics: materials, properties, applications, John Wiley & Sons2003.
    [80] W. KINGERY, FINE CERAMICS-SAITO, S, SCIENCE 239(4842) (1988) 925-925.
    [81] J.P. Schaffer, The science and design of engineering materials, (No Title) (1999).
    [82] L. Nedelcu, M. Toacsan, M. Banciu, A. Ioachim, Microwave properties of Ba (Zn1/3Ta2/3)O3 dielectric resonators, Journal of alloys and compounds 509(2) (2011) 477-481.
    [83] W.B. Hong, L. Li, H. Yan, S.Y. Wu, H.S. Yang, X.M. Chen, Room-temperature-densified H3BO3 microwave dielectric ceramics with ultra-low permittivity and ultra-high Qf value, Journal of Materiomics 6(2) (2020) 233-239.
    [84] E.C. Liang, An overview of high q te mode dielectric resonators and applications, Microwave journal 58(2) (2015) 72-82.
    [85] W. Gan, Z. Chen, F. Yang, Z. Zhou, Research states and development of high silicon aluminum alloy for light weight electronic package materials [J], Materials Review 18(6) (2004) 79-82.
    [86] S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, K. Schrapel, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina, Journal of the American Ceramic Society 80(7) (1997) 1885-1888.
    [87] H. Yu, X. Bai, G. Qian, H. Wei, X. Gong, J. Jin, Z. Li, Impact of ultraviolet radiation on the aging properties of SBS-modified asphalt binders, Polymers 11(7) (2019) 1111.
    [88] C.-L. Huang, P.-E. Chiang, T.-H. Hsu, Influence of intrinsic and extrinsic factors on microwave dielectric properties of (Sr1-xMgx)V2O6 (x= 0.01–0.09) ceramics for ULTCC applications, Materials Science and Engineering: B 273 (2021) 115438.
    [89] W.-S. Xia, L.-Y. Zhang, Y. Wang, S.-E. Jin, Y.-P. Xu, Z.-W. Zuo, L.-W. Shi, Extrinsic effects on microwave dielectric properties of high-Q MgZrTa2O8 ceramics, Journal of Materials Science: Materials in Electronics 27 (2016) 11325-11330.
    [90] M. Li, A. Feteira, M. Mirsaneh, S. Lee, M.T. Lanagan, C.A. Randall, D.C. Sinclair, Influence of nonstoichiometry on extrinsic electrical conduction and microwave dielectric loss of BaCo1/3Nb2/3O3 ceramics, Journal of the American Ceramic Society 93(12) (2010) 4087-4095.
    [91] H.X. Yuan, X.M. Chen, M.M. Mao, Structure and microwave dielectric characteristics of Ca1+xNd1−xAl1−xTixO4 ceramics, Journal of the American Ceramic Society 92(10) (2009) 2286-2290.
    [92] S.H. Kim, E.S. Kim, Intrinsic factors affecting the microwave dielectric properties of Mg2Ti1−x(Mg1/3Sb2/3)xO4 ceramics, Ceramics International 42(13) (2016) 15035-15040.
    [93] M.T. Sebastian, M. Silva, A. Sombra, Measurement of microwave dielectric properties and factors affecting them, Microwave materials and applications 2V set (2017) 1-51.
    [94] H. Pan, L. Cheng, H. Wu, Relationships between crystal structure and microwave dielectric properties of Li2(Mg1−xCox)3TiO6 (0≤ x≤ 0.4) ceramics, Ceramics International 43(17) (2017) 15018-15026.
    [95] R. Muhammad, Y. Iqbal, C.R. Rambo, H. Khan, Research trends in microwave dielectrics and factors affecting their properties: a review, International journal of materials research 105(5) (2014) 431-439.
    [96] C.-L. Huang, W.-R. Yang, P.-C. Yu, High-Q microwave dielectrics in low-temperature sintered (Zn1− xNix)3Nb2O8 ceramics, Journal of the European Ceramic Society 34(2) (2014) 277-284.
    [97] R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides, Journal of Applied physics 73(1) (1993) 348-366.
    [98] P. Zhang, K. Sun, M. Xiao, Z. Zheng, Crystal structure, densification, and microwave dielectric properties of Li3Mg2(Nb(1− x)Mox)O6+x/2 (0≤ x≤ 0.08) ceramics, Journal of the American Ceramic Society 102(7) (2019) 4127-4135.
    [99] L. Glasser, H.D.B. Jenkins, Lattice energies and unit cell volumes of complex ionic solids, Journal of the American Chemical Society 122(4) (2000) 632-638.
    [100] E.S. Kim, B.S. Chun, R. Freer, R.J. Cernik, Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics, Journal of the European Ceramic Society 30(7) (2010) 1731-1736.
    [101] N. Brese, M. O'keeffe, Bond-valence parameters for solids, Acta Crystallographica Section B: Structural Science 47(2) (1991) 192-197.
    [102] 行動裝置的明珠,淺談射頻功率放大器 (PA), 2021.
    [103] S.C. Douglas, Introduction to adaptive filters, Digital signal processing fundamentals, CRC Press2017, pp. 467-484.
    [104] R.L. Geiger, P.E. Allen, N.R. Strader, VLSI design techniques for analog and digital circuits, (1990).
    [105] C.L. Clark, LabVIEW digital signal processing, 2005.
    [106] C.A. Balanis, Antenna theory: A review, Proceedings of the IEEE 80(1) (1992) 7-23.
    [107] R.A. Pucel, D.J. Masse, C.P. Hartwig, Losses in microstrip, IEEE transactions on microwave theory and techniques 16(6) (1968) 342-350.
    [108] RF、數位/類比設計必知:傳輸線的種類., 2019.
    [109] M.K.T. Al-Nuaimi, W.G. Whittow, Compact microstrip band stop filter using SRR and CSSR: Design, simulation and results, Proceedings of the Fourth European Conference on Antennas and Propagation, IEEE, 2010, pp. 1-5.
    [110] J.-S.G. Hong, M.J. Lancaster, Microstrip filters for RF/microwave applications, John Wiley & Sons2004.
    [111] M. Makimoto, S. Yamashita, Microwave resonators and filters for wireless communication: theory, design and application, Springer Science & Business Media2001.
    [112] G. Kompa, Practical microstrip design and applications, (No Title) (2005).
    [113] G. Mahttei, L. Young, E. Jones, microwave filters, Impedance matching networks and coupling Structure, Norwood, MA, Artech House (1980).
    [114] E.J. Denlinger, Losses of microstrip lines, IEEE Transactions on Microwave Theory and Techniques 28(6) (1980) 513-522.
    [115] B. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range, IRE Transactions on Microwave theory and techniques 8(4) (1960) 402-410.
    [116] W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators, IEEE Transactions on Microwave Theory and Techniques 18(8) (1970) 476-485.
    [117] R.D. Shannon, C. Calvo, Crystal structure of LiVO3, Canadian Journal of Chemistry 51(2) (1973) 265-273.
    [118] W.-B. Li, H.-H. Xi, D. Zhou, Microwave dielectric properties of LiMVO4 (M= Mg, Zn) ceramics with low sintering temperatures, Ceramics International 41(7) (2015) 9063-9068.
    [119] H.-W. Chen, H. Su, H.-W. Zhang, T.-C. Zhou, B.-W. Zhang, J.-F. Zhang, X.-l. Tang, Low-temperature sintering and microwave dielectric properties of (Zn1− xCox)2SiO4 ceramics, Ceramics International 40(9) (2014) 14655-14659.
    [120] Z. Yang, Y. Tang, J. Li, W. Fang, J. Ma, A. Yang, L. Liu, L. Fang, Crystal structure, Raman spectra and microwave dielectric properties of novel low-temperature cofired ceramic Li4GeO4, Journal of Alloys and Compounds 867 (2021) 159059.
    [121] S. Wan, S. Zhang, X. Gong, Y. Zeng, S. Jiang, J. You, Structural investigations on two typical lithium germanate melts by in situ Raman spectroscopy and density functional theory calculations, CrystEngComm 22(4) (2020) 701-707.
    [122] H.S. Park, K.H. Yoon, E.S. Kim, Effect of bond valence on microwave dielectric properties of complex perovskite ceramics, Materials chemistry and physics 79(2-3) (2003) 181-183.
    [123] J. Dhanya, E.K. Suresh, R. Naveenraj, R. Ratheesh, Synthesis and characterization of Na5M(MoO4)4 (M= Y, Yb) microwave ceramics for ULTCC applications, Ceramics International 44(6) (2018) 6699-6704.
    [124] J. Bao, H. Li, X. Xu, W. Guo, Y. Chen, Y. Zhang, J. Du, H. Wu, G. Duan, Z. Yue, Crystal structure, Raman spectrum, bond characteristics, and terahertz time-domain spectrum of novel Na5Tm(MoO4)4 microwave dielectric ceramic with ultra-low sintering temperature and high quality factor, Journal of Alloys and Compounds 939 (2023) 168652.
    [125] F. Li, Y. Li, Y. Li, X. Feng, J. Zhang, X. Liu, Y. Lu, S. Wang, Y. Liao, T. Tang, Enhanced Na+-substituted Li2Mg2Mo3O12 ceramic substrate based on ultra-low temperature co-fired ceramic technology for microwave and terahertz polarization-selective functions, Journal of the European Ceramic Society 43(2) (2023) 384-391.

    無法下載圖示 校內:2029-01-30公開
    校外:2029-01-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE