簡易檢索 / 詳目顯示

研究生: 洪崇恩
Hung, Chung-En
論文名稱: 水庫排砂對下游河相變遷之探討
Downstream Morphologic Changes Due To Reservoir Desilting
指導教授: 王筱雯
Wang, Hsiao-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 91
中文關鍵詞: 水庫排砂河相變遷細粒料填縫
外文關鍵詞: reservoir desilting, downstream morphologic change, fine sediment infiltration
相關次數: 點閱:108下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣位於環太平洋地震帶,地震發生相當頻繁,因此易使土壤鬆軟,加上氣候變遷導致極端降雨事件發生機率增加,每逢雨季時上游產生大量泥砂進入水庫,造成庫區嚴重淤積,影響到水庫的使用年限,為維持水庫能永續經營,許多水庫正透過各種方法實施水庫排砂。
    水庫進行排砂操作後,將使大量的泥砂由庫區進入至水庫下游河道,導致河川下游型態改變,進一步影響到生態、防洪等安全。
    本研究選取阿公店水庫下游及南化水庫下游作為研究區域,藉由現場調查及資料蒐集(斷面地形及粒徑分析),以評估排砂操作對下游河川河相之影響。根據河道沖淤量變化量可知排砂操作後,阿公店溪排放之泥砂大多數皆可輸送至距離水庫放流口下游4,436 m處以下;南化水庫模擬以及兩次的地形資料顯示,整體下游河道泥砂運輸能力強,模擬排砂操作後下游河川僅產生少量的淤積,對於興建水庫後下游缺少泥砂來源有補給的功用。由本研究之細粒料填縫分析可知,在沒有防淤隧道操作的情況下,河道本身能透過大流量的攜帶能力改善細粒料填縫情形。
    水庫的興建導致水庫下游河川長時間泥砂缺少補給,造成下游河道沖刷,因此藉由水庫的排砂操作,對下游河相將會有泥砂補給的功用,就整體而言,水庫排砂操作對於下游河相的影響,由泥砂的角度來看,是有益的。

    Part of the Circum-Pacific Seismic Zone, Taiwan has been frequently struck by earthquakes that lead to soft soil. As extreme rainfall caused by climate change is increasing, a large volume of sediment from upstream flows into reservoirs in every rainy season followed by severe deposition which affects the useful life of reservoirs. To keep reservoirs sustainable, methods are carried out in many reservoirs for desilting.
    After desilting, a large volume of sediment flows from reservoirs to downstream that changes the downstream morphology and influences ecological safety and flood control.
    Taking the downstream of Agongdian Reservoir and Nanhua Reservoir as the studied area, the study through field survey and data collection (section topography and particle size analysis) evaluates the effect of desilting on the downstream morphology. According to the scouring and silting variation, it is known that, upon desilting, the bulk of sediment released from Agongdian River can be transported to the downstream at 4,436 m from the reservoir effluent. Nanhua Reservoir simulation and two topographic data demonstrate a great sediment transport in the downstream way. With simulation of sediment releasing, only a small volume of sediment in the downstream river occurs as a complement to a shortage of sediment in the downstream after reservoir is built. It is known from an analysis of the fine sediment infiltration that, without desilting tunnel, the watercourse itself with great carrying capacity improves the fine sediment infiltration.
    Building reservoir causes long shortage of sediment and channel erosion in the downstream river, so sediment released from reservoir is a complement to the downstream morphology. Generally, reservoir desilting has beneficial effect on the downstream morphology, in terms of sediment.

    目錄 摘要 I 致謝 V 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 論文架構 2 第二章 文獻回顧 4 2-1 河相變遷 4 2-2 國內外水庫排砂案例 7 2-3 細粒料填縫 20 2-4 小結 23 第三章 研究方法 24 3-1 研究區域 24 3-1-1阿公店溪 24 3-1-2後堀溪 28 3-2 資料蒐集與補遺 32 3-2-1阿公店溪 32 3-2-2後堀溪 40 3-3 現場調查 43 3-3-1地形測量 44 3-3-2表面粒徑採樣 45 3-4 細粒料填縫分析 48 3-5土方量計算 50 第四章 結果與討論 52 4-1 河相地形 52 4-1-1阿公店溪 52 4-1-2後堀溪 66 4-1-3小結 71 4-2 粒徑變化 71 4-2-1阿公店溪粒徑變化 71 4-2-2後堀溪粒徑 74 4-2-3小結 76 4-3 細粒料填縫 77 4-3-1阿公店溪 77 4-3-2後堀溪 77 4-4 綜合分析 81 第五章 結論與建議 84 5-1 結論 84 5-2 建議 85 參考文獻 86

    1. Amsler, M. L. and Drago, E. C., (2009), “A Review of the Suspended Sediment Budget at the Confluence of the Paran´a and Paraguay Rivers,” Hydrol. Process. 23, pp.3230-3235.
    2. Asaeda, T., Rashid, M.H. (2012), “The impacts of sediment released from dams on downstream sediment bar vegetation,” Journal of Hydrology 430–431, 25–38.
    3. Brusven, M., & Prather, K. (1974), “Influence of stream sediments on distribution of macrobenthos,” Journal of the Entomological Society of British Columbia, 71, 25-32.
    4. Bjornn, T. C., Brusven., M. A., Molnau., M. P., Milligan., J. H., Klamt., R. A., Chacho., E., & Schaye, C. (1977), “Transport of granitic sediment in streams and its effects on insects and fish,” Research Technical Completion Report, Project B-036-IDA, prepared by University of Idaho, Moscow, for Office of Water Research and Technology, U. S. Department of the Interior, Washington, D. C.
    5. Bunte, K., & Abt, S. R. (2001), “Sampling Surface and Subsurface Particle-Size Distributions in Wadable Gravel- and Cobble-Bed Streams for Analyses in Sediment Transport,” Hydraulics, and Streambed Monitoring, USDA, General Technical Report RMRS-GTR-74.
    6. Cooper, A. C. (1965), “The effect of transported stream sediments on the survival of sockeye and pink salmon eggs and alevin,” Bulletin 18, International Pacific Salmon Fisheries Commission, New Westminster, British Columbia, Canada.
    7. Dredge Measurement and Payment Volume Computations. In Engineering and Design: Hydrographic Surveying. Publication No. EM.
    8. Drago, E. C., Amsler, M. L., (1988), “Suspended Sediment at a Cross Section of the Middle Parana River: Concentration, Granulometry and Influence of the Main Tributaries. In: Sediment Budgets,” IAHS Publication No. 174, pp. 381–396.
    9. Davies, T.R.H., and Korup, O. (2007). “Persistent alluvial fanhead trenching resulting from large, infrequent sediment inputs,” Earth Surface Processes and Landforms, 32(5), 725-742.
    10. Draunt, A. E., & Ritchie, A. C., (2013), “Sedimentology of New Fluvial Deposits on the Elwha River, Washington, USA, Formed During Large-Scale Dam Removal,” River Research And Applications, DOI: 10.1002/rra.2724.
    11. Einstein, H. (1968), “Deposition of suspended particles in a gravel bed”.
    12. Gammon, J. R. (1970), “The effect of inorganic sediment on stream biota,” Water Pollution Control Research Series, Grant 18050 DWC 12/70,Water Quality Office of U.S. Environmental Protection Agency,Washington, D. C.
    13. Gilbert J, Link B., (1995), “Alluvium distribution in Lake Mills, Glines Canyon Project, and Lake Aldwell, Elwha Project, Washington. U.S.,” Department of the Interior, Elwha Technical Series PN-95-4. 60 p.
    14. Greig, S., Sear, D., & Carling, P. (2005), “The impact of fine sediment accumulation on the survival of incubating salmon progeny: implications for sediment management,” Science of the Total Environment, 344(1), 241-258.
    15. Gillenwater, D., Granata, T., and Zika, U. (2006), “GIS-based modeling of spawning habitat suitability for walleye in the Sandusky River, Ohio, and implications for dam removal and river restoration,” Ecological Engineering, 28: 311-323.
    16. Koski, K. V. (1966), “The survival of coho salmon (Oncorhynchus kisutch) from egg deposition to emergence in three Oregon coastal streams,” Oregon State University.
    17. Kondolf, G. M., & Wolman, M. G. (1993), “The sizes of salmonid spawning gravels,” Water Resources Research, 29(7), 2275-2285.
    18. Kondolf, G. M. (1994), “Geomorphic and environmental effects of instream gravel mining,”Landscape and Urban Planning 28:225–243.
    19. Kondolf, G. M., (1997), “Hungry Water: Effects of Dams and Gravel Mining on River Channels,” Environmental Management, Vol. 21(4). Springer-Verlag, New York Inc, pp. 533-551.
    20. Kondolf, G. M., (2000), “Assessing salmonid spawning gravel quality,” Transactions of the American Fisheries Society 129: 262-281.
    21. Kondolf, G. M., Gao, Y., Annandale, G. W., Morris, G. L., Jiang, E., Zhang, J., Cao ,Y., Carling, P., Fu, K., Guo, Q., Hotchkiss, R., Peteuil, C., Sumi, T., Wang, H. W., Wang, Z., Wei, Z., Wu, B., Wu, C., and Yang, C. T. (2013), “Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents,” Earth’s Future, Doi:10.1002/2013EF000184.
    22. Laursen, E. M., (1952), “Observation on the scour,” Proceedings 5th hydraulic conference, University of IOWA, Studies in Engineering, Bulletin 34:179-197.
    23. Lisle, T. E. (1989), “Sediment transport and resulting deposition in spawning gravels,” North Coastal California. Water Resources Research, 25(6), 1303-1319.
    24. Raudkivi, A. J. (1976), “Loose Boundary Hydraulics,” 2nd Edition, Pergamon Press.
    25. Rahn, P. H., (1977), “Erosion Below Mainstem Dams on the Missouri River,” Bulletin, AEG, Vol. 14, No. 3, p.157-181.
    26. Randle TJ, Young CA, Melena JT, Ouellette EM., (1996), “Sediment analysis and modeling of the river erosion alternative. U.S. Bureau of Reclamation, Pacific Northwest Region,” Elwha Technical Series PN-95-9. 138 pp.
    27. Sear, D. A., P. A, C., & S. M, G. (2005), “Fine sediment accumulation in spawning gravels and the effects on interstitial flow, in Fifth International Symposium on Ecohydraulics: Aquatic Habitats: Analysis & Restoration,” Edited by D. J. Lastra and P. V. Martinez, pp. 808– 812, IAHR, Madrid.
    28. U.S. Department of Interior, (1996), “Removal of Elwha and Glines Canyon Dams. U.S. Bureau of Reclamation,” Elwha Technical Series PN-95-7: 86.
    29. Wolman, M. G., (1954), “A method of sampling coarse river-bed material,” Transactions of the American Geophysical Union 35: 951-956.
    30. Wu, F. C. (1993), “Stochastic Modeling of Sediment Intrusion into Gravel Beds,” Ph.D. dissertation, University of California, Berkely.
    31. Wunderlich, R.C., Winter, B.D., and Meyer, J.H., (1994), “Restoration of the Elwha River ecosystem,” Fisheries 19(8):11-19.
    32. Wohl, E.E. & Cenderelli, D.A. (2000), “Sediment Deposition and Transport Patterns Following a Reservoir Sediment Release,” Water Resources Research, Vol. 36, No. 1, 319-333.
    33. Wooster, J. K., Dusterhoff, S. R., Cui, Y., Sklar, L. S., Dietrich, W. E., & Malko, M. (2008), “Sediment Supply and Relative Size Distribution Effects on Fine Sediment Infiltration into Immobile Gravels,” Water Resources Research, 44(3), W03424.
    34. 王筱雯(2012),「七家灣溪一號壩壩體改善工程水文泥砂監測」,內政部營建署雪霸國家公園管理處。
    35. 台灣省水利局(1985),「阿公店溪治理規劃報告」。
    36. 台灣省水利局(1996),「阿公店溪(上游段)治理規劃報告」。
    37. 申冠卿、尚红霞、李小平(2009),「黄河小浪底水库异重流排沙效果分析及下游河道的响应」,泥沙研究,第1期:39-47。
    38. 巨廷工程顧問股份有限公司(2012),「曾文溪水系支流後堀溪治理規劃檢討」,經濟部水利署第六河川局。
    39. 巨廷工程顧問股份有限公司(2014),「南化水庫防淤隧道工程對下游河道影響評估期末報告書」,台灣自來水股份有限公司第六區管理處。
    40. 艾奕康工程顧問股份有限公司(2012),「阿公店溪治理規劃檢討-治理規劃報告」,經濟部水利署第六河川局。
    41. 李桂呈(2011),「應用泥砂收支模式探討高屏溪海岸變遷」,國立成功大學土水利及海洋工程學系碩士論文。
    42. 京華工程顧問股份有限公司(2011),「南部地區河川污染整治與水質改善策略規劃及執行計畫」,行政院環境保護署。
    43. 國立交通大學(2006),「阿公店水庫平時防淤操作對下游河道之影響研究」,經濟部水利署水利規劃試驗所。
    44. 財團法人成大研究發展基經會(2012),「阿公店水庫防淤泥砂觀測報告及成效評估」,經濟部水利署南區水資源局。
    45. 逢甲大學(2010),「永續水庫規劃研究(4)-土壠灣水庫排砂效率與觀測資料分析之研究(2/3)」,經濟部水利署水利規劃試驗所。
    46. 郭泳承(2011),「水庫淤積及清淤處理實習報告」,台灣電力公司。
    47. 陳樹群、施姵瑜、吳俊鋐、趙益群(2013),「巨額土砂匯入對和社溪河相演變之影響」,中華水土保持學報,44(4): 302-310。
    48. 逢甲大學(2013),「水庫排洪排砂兼顧下游河道河槽建立之研究(1/2)」,經濟部水利署水利規劃試驗所。
    49. 張家豪(2012),「七家灣溪壩體移除對河相演變之探討」,國立成功大學土水利及海洋工程學系碩士論文。
    50. 經濟部水利署(2012),台灣水文年報。
    51. 詮華國土測繪有限公司(2008),「阿公店水庫暨阿公店溪空庫防淤測量報告書」,經濟部水利署南區水資源局。
    52. 詮華國土測繪有限公司(2010),「阿公店水庫暨阿公店溪空庫防淤測量報告書」,經濟部水利署南區水資源局。
    53. 詮華國土測繪有限公司(2011),「阿公店水庫暨阿公店溪空庫防淤測量報告書」,經濟部水利署南區水資源局。
    54. 詮華國土測繪有限公司(2012),「阿公店水庫暨阿公店溪空庫防淤測量報告書」,經濟部水利署南區水資源局。
    55. 衛紀淮(2013),「細砂入滲理論及動態模擬」,國立台灣大學土木工程學系碩士論文。
    56. 賴伯勳、曾仁宏(2000),「研習水庫淤積清除及處理研究與集水區保育及管理」,經濟部水利處。
    57. 中華民國行政院文化部,台灣大百科全書:http://nrch.culture.tw/
    58. 地理資訊倉儲中心:http://gic.wra.gov.tw/gic/HomePage/Index.aspx

    下載圖示 校內:2016-10-21公開
    校外:2016-10-21公開
    QR CODE