| 研究生: |
吳利亞 Wu, Li-Ya |
|---|---|
| 論文名稱: |
使用改良型電子飄移與參數分類演算法於同步發電機模型參數辨識 Model Parameter Identification for Synchronous Generator Based on MeDA and Parameter Classification Approaches |
| 指導教授: |
楊宏澤
Yang, Hong-Tzer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 參數辨識 、參數選擇 、參數分類 、電子飄移演算法 |
| 外文關鍵詞: | parameter identification, parameter selection, parameter classification, electron drifting algorithm |
| 相關次數: | 點閱:98 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電力系統模擬廣泛地應用於電力系統規劃與運轉控制,其中同步發電機模型的正確性更具關鍵性。若模型與實際機組間存在過大誤差,將無法正確反應系統的特性,其中尤以對系統暫態響應之評估影響最鉅,其中的誤差可能將導致系統設計與規劃時產生誤判,若情勢嚴重則可能造成系統故障,甚至引發區域性停電而致經濟損失。
模型的正確性在於1) 合適的數學模型及2) 正確的參數設定。許多商用的電力系統模擬軟體已包含了現成的模型供系統模擬使用,因此本文假設數學模型的架構合適無錯誤;然而因某些模型參數無法從製造商取得,或隨著設備老化與運轉環境的改變,模型中的參數需要一套參數辨識方法以準確的設定及校正。本文提出使用改良型電子飄移演算法的參數校正方法,僅需比較模型輸出與設備量測值,即可獲得最適的參數值。為了增進參數辨識的效能,本方法結合了參數選擇及參數分類兩個前置作業;參數選擇分析參數與輸出之間的關係,挑選出具影響力易於辨識的參數;參數分類依據參數對不同輸出的影響性加以分類,並使用四階層最佳化方法,有效的找到最佳解。由於改良型電子飄移演算法使用搜尋歷程資料庫的特性,有效地利用參數選擇過程中累積的資訊,成功地整合最佳化搜尋與參數分類,進而提升參數辨識方法的效能。
本文使用三個測試系統驗證所提出方法的可行性及效能,研究結果證實所提方法在模擬及實測數據都有更佳的表現。除此之外,所提方法易於實踐,可廣泛地應用在不同的領域中。
Nowadays, power system simulation is widely used for power system operation management and planning, and the accuracy of the synchronous generator model plays a critical role in power system simulation. Models with huge deficiencies may fail to reflect the system's behavior, especially the system's dynamic responses. It might lead to wrong predictions, causing incorrect decisions and operation, and end up with damage to the system or even a regional blackout that causes economical loss.
The accuracy of a model comprises 1) proper structure and 2) correct setting of the model parameters. Since many power system simulation tools have been developed, equipped with well-designed templates for model construction, we assume that there is no problem with the model structure in this thesis. However, due to device aging, changes in the operating conditions, or the inaccessibility of some parameters, there is a veritable need for a parameter identification method to set or calibrate the model parameters.
In this thesis, we propose a new parameter identification method based on a modified electron drifting algorithm (MeDA), which can obtain the best-fit parameter values by using only the comparison of the measurement data with the model outputs instead of the information of the model's inner equations. To enhance performance, parameter selection and classification are applied. The parameter selection analyzes the parameter-output relationship and selects parameters that are the most influential and identifiable. The parameter classification categorizes the selected parameters into groups according to their effects on individual outputs. Then, it applies the four-stage algorithm to effectively solve the optimization problem. In addition, MeDA has a unique feature of using a database that stores the search historical data. It can efficiently utilize the data collected from the parameter classification, and thus perfectly integrates the parameter classification with the optimization search.
The feasibility and performance of the proposed method are verified through three tests. They confirm that the proposed method performs better than other methods in both simulations and experimental tests. Last but not least, the proposed method is easy to implement, showing its great applicability to various areas.
[1] Z. Huang, P. Du, D. Kosterev and S. Yang, "Generator dynamic model validation and parameter calibration using phasor measurements at the point of connection," IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1939-1949, May 2013.
[2] L. Fu and P. Li, "The Research Survey of System Identification Method," 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics, pp. 397-401, 2013.
[3] Y. n. Yu and H. A. M. Moussa, "Experimental Determination of Exact Equivalent Circuit Parameters of Synchronous Machines," IEEE Transactions on Power Apparatus and Systems, vol. PAS-90, no. 6, pp. 2555-2560, Nov. 1971.
[4] "IEEE Standard Procedures for Obtaining Synchronous Machine Parameters by Standstill Frequency Response Testing," IEEE Std 115A-1987, pp.0_1-, 1987.
[5] "IEEE Guide: Test Procedures for Synchronous Machines Part I--Acceptance and Performance Testing Part II-Test Procedures and Parameter Determination for Dynamic Analysis," IEEE Std 115-1995, pp.1-198, April 1996.
[6] "IEEE Guide for Synchronous Generator Modeling Practices and Applications in Power System Stability Analyses," IEEE Std 1110-2002 (Revision of IEEE Std 1110-1991), pp.0_1-72, 2003.
[7] S. Henschel and H. W. Dommel, "Noniterative synchronous machine parameter identification from frequency response tests," IEEE Transactions on Power Systems, vol. 14, no. 2, pp. 553-560, May 1999.
[8] R. Wamkeue, C. Jolette and I. Kamwa, "Advanced Modeling of a Synchronous Generator Under Line-Switching and Load-Rejection Tests for Isolated Grid Applications," IEEE Transactions on Energy Conversion, vol. 25, no. 3, pp. 680-689, Sept. 2010.
[9] C. Fernández et al., "Simple Model and Experimental Identification of a Fuel-Cell-Based Power Supply Oriented to System-Level Analysis," IEEE Transactions on Power Electronics, vol. 26, no. 7, pp. 1868-1878, July 2011.
[10] H. B. Karayaka, A. Keyhani, G. T. Heydt, B. L. Agrawal and D. A. Selin, "Synchronous generator model identification and parameter estimation from operating data," IEEE Transactions on Energy Conversion, vol. 18, no. 1, pp. 121-126, Mar 2003.
[11] J. Wolberg, "Data Analysis Using the Method of Least Squares: Extracting the Most Information from Experiments," Springer, 2005.
[12] E. L. Lehmann, G. Casella, "Theory of Point Estimation (2nd ed.)," Springer, 1998.
[13] C. C. Lee and O. T. Tan, "A weighted-least-squares parameter estimator for synchronous machines," IEEE Transactions on Power Apparatus and Systems, vol. 96, no. 1, pp. 97-101, Jan. 1977.
[14] R. Wamkeue, D. Aguglia, M. Lakehal and P. Viarouge, "Two-Step Method for Identification of Nonlinear Model of Induction Machine," IEEE Transactions on Energy Conversion, vol. 22, no. 4, pp. 801-809, Dec. 2007.
[15] R. Wamkeue, C. Jolette, A. B. M. Mabwe and I. Kamwa, "Cross-Identification of Synchronous Generator Parameters from RTDR Test Time-Domain Analytical Responses," IEEE Transactions on Energy Conversion, vol. 26, no. 3, pp. 776-786, Sept. 2011.
[16] M. Karrari and O. P. Malik, "Identification of physical parameters of a synchronous Generator from online measurements," IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 407-415, June 2004.
[17] R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems," Journal of Basic Engineering. Vol. 82, no. 35, 1960.
[18] Rui Fan, Z. Huang, Shaobu Wang, R. Diao and Da Meng, "Dynamic state estimation and parameter calibration of a DFIG using the ensemble Kalman filter," 2015 IEEE Power & Energy Society General Meeting, pp. 1-5, 2015.
[19] M. A. M. Ariff, B. C. Pal and A. K. Singh, "Estimating Dynamic Model Parameters for Adaptive Protection and Control in Power System," IEEE Transactions on Power Systems, vol. 30, no. 2, pp. 829-839, March 2015.
[20] G. Valverde, E. Kyriakides, G. T. Heydt and V. Terzija, "Nonlinear Estimation of Synchronous Machine Parameters Using Operating Data," IEEE Transactions on Energy Conversion, vol. 26, no. 3, pp. 831-839, Sept. 2011.
[21] X. Zhang et al., "Ambient signal based load model parameter identification using optimization method," 2015 IEEE Power & Energy Society General Meeting, pp. 1-5, 2015.
[22] J. J. R. Melgoza, G. T. Heydt, A. Keyhani, B. L. Agrawal and D. Selin, "Synchronous machine parameter estimation using the Hartley series," IEEE Transactions on Energy Conversion, vol. 16, no. 1, pp. 49-54, Mar 2001.
[23] J. Zhang and H. Xu, "Microperturbation Method for Power System Online Model Identification," IEEE Transactions on Industrial Informatics, vol. 12, no. 3, pp. 1055-1063, June 2016.
[24] M. Dehghani, S.K.Y. Nikravesh, “Nonlinear state space model identification of synchronous generators”, Electric Power Systems Research, Volume 78, Issue 5, Pages 926-940, May 2008.
[25] Y. del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J. C. Hernandez and R. G. Harley, "Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems," IEEE Transactions on Evolutionary Computation, vol. 12, no. 2, pp. 171-195, April 2008.
[26] Tithiwat Therdbankerd, Peerayot Sanposh, Nattapon Chayopitak and Hideaki Fujita, "Parameter identification of a Linear Permanent Magnet motor using Particle Swarm Optimization," ECTI-CON2010: The 2010 ECTI International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, pp. 173-177, 2010.
[27] Xiuge Zhang, Ye Ren and Qizhou Hu, “Synchronous generator parameters identification on-line using small population-based particle swarm optimization,” Journal of Chemical and Pharmaceutical Research, vol.6, no. 5, pp.1689-1695, 2014.
[28] L. Haoguang, Y. Yunhua and S. Xuefeng, "Load parameter identification based on particle swarm optimization and the comparison to ant colony optimization," 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), pp. 545-550, 2016.
[29] P. Yu and J. Zhang, "Parameter Identification of Excitation System Based on Field Data and PSO," 2010 International Conference on E-Product E-Service and E-Entertainment, pp. 1-4, 2010.
[30] J. Yang, J. Zhang and W. Pan, "Dynamic Equivalents of Power System Based on Extended Two Particle Swarm Optimization," Third International Conference on Natural Computation (ICNC 2007), pp. 609-613, 2007.
[31] Y. G. Kim, H. Song, H. R. Kim and B. Lee, "Particle swarm optimization based load model parameter identification," IEEE PES General Meeting, pp. 1-6, 2010.
[32] Z. Chen, X. Yuan, Y. Yuan, H. H. C. Iu, and T. Fernando, "Parameter Identification of Integrated Model of Hydraulic Turbine Regulating System with Uncertainties Using Three Different Approaches," IEEE Transactions on Power System, accepted
[33] S. Das and P. N. Suganthan, "Differential Evolution: A Survey of the State-of-the-Art," IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 4-31, Feb. 2011.
[34] M. Srinivas and L. M. Patnaik, "Genetic algorithms: a survey," Computer, vol. 27, no. 6, pp. 17-26, June 1994.
[35] R. Zhang, Y. Xu, Z. Y. Dong and K. P. Wong, "Measurement-based dynamic load modelling using time-domain simulation and parallel-evolutionary search," IET Generation, Transmission & Distribution, vol. 10, no. 15, pp. 3893-3900, Nov. 2016.
[36] D. C. Aliprantis, S. D. Sudhoff and B. T. Kuhn, "Genetic algorithm-based parameter identification of a hysteretic brushless exciter model," IEEE Transactions on Energy Conversion, vol. 21, no. 1, pp. 148-154, March 2006.
[37] K. S. Huang, Q. H. Wu and D. R. Turner, "Effective identification of induction motor parameters based on fewer measurements," IEEE Transactions on Energy Conversion, vol. 17, no. 1, pp. 55-60, Mar 2002.
[38] H. Bai, P. Zhang and V. Ajjarapu, "A Novel Parameter Identification Approach via Hybrid Learning for Aggregate Load Modeling," IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1145-1154, Aug. 2009.
[39] B. Zaker, G. B. Gharehpetian, M. Karrari and N. Moaddabi, "Simultaneous Parameter Identification of Synchronous Generator and Excitation System Using Online Measurements," IEEE Transactions on Smart Grid, vol. 7, no. 3, pp. 1230-1238, May 2016.
[40] F. Rashidi, E. Abiri, T. Niknam and M. R. Salehi, "On-line parameter identification of power plant characteristics based on phasor measurement unit recorded data using differential evolution and bat inspired algorithm," IET Science, Measurement & Technology, vol. 9, no. 3, pp. 376-392, May 2015.
[41] I. A. Hiskens, "Nonlinear dynamic model evaluation from disturbance measurements," IEEE Transactions on Power Systems, vol. 16, no. 4, pp. 702-710, Nov 2001.
[42] S. M. Benchluch and J. H. Chow, "A trajectory sensitivity method for the identification of nonlinear excitation system models," IEEE Transactions on Energy Conversion, vol. 8, no. 2, pp. 159-164, Jun 1993.
[43] R. Preece and J. V. Milanović, "Assessing the Applicability of Uncertainty Importance Measures for Power System Studies," IEEE Transactions on Power Systems, vol. 31, no. 3, pp. 2076-2084, May 2016.
[44] Shahidehpour, Mohammad, and Y. Wang. "Appendix C: IEEE‐30 Bus System Data." Communication and Control in Electric Power Systems, pp. 493-495, 2005.
[45] Rujun Li, M. A. Henson and M.J. Kurtz, "Selection of model parameters for off-line parameter estimation," IEEE Transactions on Control Systems Technology, vol. 12, no. 3, pp. 402-412, May 2004.
[46] 李輝煌,"田口方法:品質設計的原理與實務第四版Taguchi Methods: Principles and Practices of Quality Design", 高立出版社,2017
[47] J. T. Liao and H. T. Yang, "A novel electrons drifting algorithm for non-linear optimization problems," 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 155-160, 2016.
[48] P. W. Sauer, M. A. Pai, "Power System Dynamics and Stability," Prentice Hall, 1998
[49] F. Hou, R. Guo, X. Yu and L. Wang, "Identification of network parameter and measurement errors based on a mixed integer quadratic programming model," 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1-5, 2016.
[50] Jun Zhu and A. Abur, "Identification of network parameter errors," IEEE Transactions on Power Systems, vol. 21, no. 2, pp. 586-592, May 2006.
[51] J. Zhu and A. Abur, "Improvements in Network Parameter Error Identification via Synchronized Phasors," IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 44-50, Feb. 2010.
[52] Y. Lin and A. Abur, "Enhancing Network Parameter Error Detection and Correction via Multiple Measurement Scans," IEEE Transactions on Power Systems, vol. 32, no. 3, pp. 2417-2425, May 2017.