簡易檢索 / 詳目顯示

研究生: 翁彰鍵
Wong, Chang-Chien
論文名稱: 電子編程熔絲特性分析與改善
Characterization and Performance Enhancement of Electrically Programmable Fuse (eFuse)
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 106
中文關鍵詞: 電子編程熔絲壓縮應力拉伸應力電致遷移效應多晶矽斷裂多晶矽熔絲
外文關鍵詞: electrically programmable fuse (eFuse), compressive stress, tensile stress, electromigration, polysilicon rupture, polysilicon fuse
相關次數: 點閱:84下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於摩爾定律經驗下,半導體技術與製程發展持續不斷的演進,晶片也隨之微小化、多樣化與複雜化。由於現今的積體電路在設計上、製造上以及相關測試驗證的流程不僅耗時也同時伴隨著急速攀升的成本支出,如何保障每顆生產的晶片都可以正常的工作且具有良好的可靠度,進而降低生產及測試成本支出以獲得穩定的利潤已經是十分重要的一門課題。西元2002年,國際知名半導體製造商IBM首度對外發表了電子編程熔絲(Electrically Programmable Fuse, eFuse)的技術文件。IBM成功將電致遷移效應實現於eFuse元件,即使該效應在傳統半導體製程當中一直是被視為可靠度與電路設計的不良缺陷。西元2004年,IBM在12吋半導體製程正式將eFuse技術應用在其所設計與製造的微處理器之中。直至現今,eFuse已經是廣為使用在半導體金氧半(Complementary metal-oxide-semiconductors, CMOS)製程中的技術,亦為一次性編程(One-time Electrically Programming, OTP) 應用之中發展快速且為人熟知的元件。從該技術發表至今,國內外已經累積不少其相關的研究論文,不論是在電性上或物性上,針對其編程機制以及不同材質與結構都有極深入之探討。本論文根據該技術主要分為兩個主題進行研究,第一個主題針對多晶矽電子編程熔絲(Polysilicon eFuse)進行相關實驗與討論,第二個主題則是主動區電子編程熔絲(Active eFuse)的試作與研究。

    首先,針對多晶矽電子編程熔絲的研究,此部分分為兩個實驗,第一個實驗使用了相容於雙重應力介層(Dual-stress-liner, DSL)的CMOS製程技術製備具有不同應力環境下的多晶矽電子編程熔絲,其一為壓縮應力(Compressive-stress)薄膜,其二為拉伸應力(Tensile-stress)薄膜,並探討其特性與效能。第二個實驗則是使用了相容於單一應力介層(Single-stress-liner, SSL)的CMOS製程技術,藉由選擇性的加入應力緩衝層(Stress buffer layer),製備具有不同應力環境下的多晶矽電子編程熔絲。經由電性上的量測分析與物性上的穿透式電子顯微鏡(Transmission electron microscopy, TEM) and 能量色散X-射線光譜(Energy dispersive X-ray spectrometry, EDS)分析,其編程機制,如電致遷移模式(Electromigration mode)與多晶矽斷裂模式(Polysilicon Rupture mode),得已被充分的討論與理解。該實驗結果顯示具有壓縮應力的薄膜或有效的降低具有拉伸應力的薄膜施加在電子熔絲上的應力,皆有助於提升多晶矽電子編程熔絲在編程後的可靠度與性能表現,這是由於壓縮應力可促成空洞成核反應(void nucleation),進而使得多晶矽產生完整的斷裂部,除了可有效增加熔絲電阻,並同時可防止融熔態之矽化金屬化合物在編程過程中因為容積變化產生之反作用力所形成的回填現象,由第一個實驗成果可得最低與最高的編程電流為7 mA與13 mA,並同時達到編程後與編程前的電阻比大於10^3,而第二個實驗成果可得最低與最高的編程電流為5 mA與10 mA,而編程後與編程前的電阻比大於10^2。

    另外,針對主動區電子編程熔絲的研究,則是使用了具有絕緣層的矽晶圓(SOI wafer)來製備,由於該晶圓的主動區與矽基板使用了絕緣層作為隔離,可有效阻隔矽基板產生的熱傳導,因此十分適合用以製造主動區電子編程熔絲。在該實驗中,使用了不同摻雜型態的熔絲,一為N型,一為P型。從結果得知,P型主動區電子編程熔絲具有較佳的特性,這是由於P型摻雜有助於矽化金屬層與主動區的電致遷移效應,進而產生主動區的斷裂或斷開現象,該現象有助於提升編程後的熔絲電阻,實驗成果可得最低與最高的編程電流為16 mA與22 mA,同時達到編程後與編程前的電阻比大於10^3。

    Under the guidance of Moore's Law, the manufacturing semiconductor process of integrated circuits has been going forward. And the complexity of IC chips has been also greatly increased. How to ensure each IC workable and prevent it from failure is a big topic because the cost of IC design and semiconductor manufacturing has been increased radpidly. In 2002, the Electrically Programmable Fuse (eFuse) technology was originally published in an IBM's technical paper at embedded DRAM conference. It has successfully adopted electromigration into semiconductor manufacturing even electromigration technology has traditionally had an adverse effect on wafer performance and has been avoided in design. And IBM announced that e-Fuse is successfully implemented into semiconductor circuit of its micro-processors on 300mm fabrication in 2004. Now, this eFuse has been a popular one of current one-time electrically programmable (OTP) components and widely adopted into complementary metal-oxide-semiconductors (CMOS) related semiconductor chips from 0.25um and beyond. In recent years, Many studies have discussed the programming conditions and physical characteristics of different eFuse structures. This dissertation is divided into two main parts to study different eFuse structures. The first part is the related research about polysilicon eFuse, and the second one is about active eFuse.

    In the part of polysilicon eFuse studies, the characterization and performance of an electrically programmable fuse (eFuse) prepared with compatible fabrication processes for complementary metal-oxide-semiconductors (CMOS) manufacturing combined with dual-stress-liner (DSL) or single-stress-liner (SSL) technique are discussed. According to the 1st experimental result, the preapred polysilicon fuse capped with compressive-stress or tensile-stress film show different electrical and physical behaviors. The programming mechanism included electromigration mode (EM) and rupture mode (RM) is well performed by referring to the analysis of transmission electron microscopy (TEM) and energy dispersive X-ray spectrometry (EDS). And the use of stress buffer layer in 2nd experiment is also studied to mitigate the intensity of the tensile-stress film. Based on the theories of electromigration, stress-migration and Blech effect, the compressive-stress film is found to contribute to void nucleation which not only increases the programmed fuse resistance but also acts as a silicide-layer refill inhibitor to provide more reliable programmed eFuse functionality. Finally, 1st experiment shows that the minimum and maximum programming currents are 7 mA and 13 mA with the ratio of post-programmed resistance (Rf) to the unprogrammed resistance (Ri), >10^3. And 2nd experiment has the minimum and maximum programming currents as 5 mA and 10 mA with the Rf/Ri ratio, >10^2.

    In the last research of active eFuse, an active fuse is successfully implemented in an SOI process fully compatible with the current CMOS technology. The structure of SOI inherently provides an isolation environment for active eFuse and is helpful to the thermal effect. The programming performance is studied with regard to the doping type of the diffusion layer. The P-type active fuse was observed to have better programming performance than the N-type at both room and high temperatures. The formation of diffusion break after programming assists the performance of the P-type active fuse. Finally, this experiment shows that the minimum and maximum programming currents are 16 mA and 22 mA with the Rf/Ri ratio, >10^3.

    Abstract (Chinese) I Abstract (English) IV Contents VIII Table captions X Figure Captions XI Chapter 1 Introduction 1 1.1 Background of Electrically Programmable Fuse (eFuse) and Related Development 1 1.2 Organization of This Dissertation 3 Chapter 2 Theory and Experimental Equipment 8 2.1 Introduction 8 2.2 The Programming Physics 8 2.3 Experimental Equipment of eFuse Fabrication on CMOS Process Technology 11 2.3.1 Metal Sputtering Equipment Introduction 11 2.3.2 Rapid Thermal Process (RTP) Introduction 13 2.3.3 Chemical Vapor Deposition (CVD) Introduction 13 2.3.4 Decoupled Plasma Nitridation (DPN) Process Introduction 14 2.4 The Analysis of eFuse Structure 15 2.4.1 Transmission Electron Microscopy (TEM) Equipment Introduction 15 2.4.2 Energy Dispersive Spectrum (EDS) Technology Introduction 16 Chapter 3 Performance Enhancement of High-Current-Injected Electrically Programmable Fuse with Compressive-Stress Nitride Layer 31 3.1 Introduction 31 3.2 Cell Structure and Experiment: Tensile-stress and Compressive-stress films capped on fuse element for study 32 3.3 Results and Discussion 33 3.4 Summary 35 Chapter 4 Performance Enhancement of Electrically Programmable Fuse with Stress Buffer Oxide Layer 46 4.1 Introduction 46 4.2 Cell Structure and Experiment: Stress buffer oxide layer for Tensile-stress relaxation 47 4.3 Results and Discuscion 48 4.4 Summary 50 Chapter 5 Diffusion Break-Assisted Programming Mode for Active Electrically Programmable Fuse 61 5.1 Introduction 61 5.2 Cell Structure and Experiment: Different implant types for study 62 5.3 Result and Discussion 63 5.4 Summary 65 Chapter 6 Conclusion and Future Work 73 6.1 Conclusion 73 6.2 Future Work 74 Reference 81

    [1] H. Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice–Hall Inc., 2001.
    [2] Che-Hua Hsu,“The Study of Tuning Work Function with Multi-Layer Metal Stacks for Deep Nano High-K/Metal Gate CMOSFET Applications,” Master's degree dissertation, National Cheng Kung University Institute of Electrical Engineering, Tainan, Taiwan, 2011.
    [3] C. Kothandaraman, Sundar K. Iyer, and Subramanian S. Iyer, “Electrically Programmable Fuse (eFUSE) Using Electromigration in Silicides,” IEEE Electron Device Letters, Vol. 23, No. 9, pp. 523-52, 2002.
    [4] Mohsen Alavi , Mark Bohr, Jeff Hicks, Martin Denham, Allen Cassens, Dave Douglas, Min-Chun Tsai, “A PROM Element Based on Salicide Agglomeration of Poly Fuses in a CMOS Logic Process,” IEEE IEDM Technical Digest., pp. 855-858, 1997.
    [5] Jay Im, Boon Ang, Sergey Tumakha, and Sunhom Paak, “Characterization of Silicided Polysilicon Fuse Implemented in 65nm Logic CMOS Technology,” Proc.IEEE 7th Non-Volatile Memory Technol. Symp., pp. 55–57, 2006.
    [6] Chunyan E. Tian, Dan Moy, Chuck Le, Brain Messenger, Chandrasekharan Kothandaraman, John Safran, S.Wu, Norman Robson, Subramanian S. Iyer, “Reliability Investigation of NiPtSi Electrical Fuse With Different Programming Mechanisms,” IEEE Transactions on Device and Materials Reliability, vol. 8, no. 3, pp. 536-542, 2008.
    [7] T.S. Doorn, M. Altheimer , “Ultra-fast programming of silicided polysilicon fuses based on new insights in the programming physics,” IEEE IEDM Technical Digest., pp. 667-670, 2005.
    [8] T. Sasaki, N. Otsuka, K. Hisano, and S. Fujii, “Melt-segregate-quenchprogramming of electrical fuse,” in Proc. IRPS 2005, pp. 347–351, 2005.
    [9] Kuei-Sheng Wu, Chang-Chien Wong, Sinclair Chi, Ching-Hsiang Tseng, Purple Huang, Devon Huang, Titan Su, “The Improvement of Electrical Programmable Fuse with Salicide-Block Dielectric Film in 40nm CMOS Technology,” Proc. IEEE Int. IITC 2010, pp. 1-3, 2010.
    [10] Hiroyuki Suto, Shigetaka Mori, Michihiro Kanno, Nakoki Nagashima, “Programming conditions for silicided poly-Si or copper electrically programmable fuses,” Proc.IEEE Int. IRW Final Rep., pp. 84–89, 2007.
    [11] Shine Chung, Tao-Wen Chung, Po-Yao Ker, Fu-Lung Hsueh, “A 1.25µm2 Cell 32Kb Electrical Fuse Memory in 32nm CMOS with 700mV Vddmin and Parallel/Serial Interface,” VLSI Circuits, 2009 Symposium on. IEEE, pp. 30-31, 2009.
    [12] Deok-kee Kim, Anthony Domenicucci, and Subramanian S. Iyer, “An investigation of electrical current induced phase transformations in the NiPtSi/polysilicon system, ” J. Appl. Phys., vol. 103, pp. 073708-073708-8, 2008.
    [13] Stefan Holzer, Rainer Minixhofer, Clemens Heitzinger, Johannes Fellner, Tibor Grasser, and Siegfried Selberherr, “Extraction of material parameters based on inverse modeling of three-dimensional interconnect fusing structures,” Microelectron.J., vol. 35, no. 10, pp. 805–810, Oct. 2004.
    [14] T. S. Doorn, “A detailed qualitative model for the programming physics of silicided polysilicon fuses” IEEE Trans. Elect. Dev., vol. 54, no. 12, pp. 3285–3291, Dec. 2007.
    [15] J. D. Plummer, M. D. Deal, and P.B. Griffin, Silicon VLSI Technology, Chap. II Prentice Hall, 2000.
    [16] I. A. Blech, "Electromigration in thin aluminum films on titanium nitride," J. Appl. Phys., 47, pp. 1203-1208, 1976.
    [17] I. A. Blech and Conyers Herring, "Stress generation by electromigration," Appl. Phys. Letter, vol. 29, pp. 131-133, 1976.
    [18] I. A. Blech and K. L. Tai, ``Measurement of Stress Gradients Generated by Electromigration,' Appl. Phys. Lett, vol. 30, no. 8, pp. 387-389, 1977.
    [19] S. S. Iyer and C. Y. Wong, “Grain growth study in aluminum films and electromigration implications,” J. Appl. Phys., vol. 57, no. 10, pp. 4594–4598, 1985.
    [20] Ying-Tsung Chen, “Using High-K Dielectric/Metal Gate with the Chemical Oxide Integration Scheme to Achieve High Performance 20-nm n/pMOS Devices,” Doctoral degree dissertation, National Cheng Kung University Institute of Electrical Engineering, Tainan, Taiwan, 2014.
    [21] R. Behrisch (ed.), Sputtering by Particle bombardment:. Springer, Berlin. ISBN 978-3-540-10521-3, 1981.
    [22] Jan-Otto Carlsson, Peter M. Martin, in Handbook of Deposition Technologies for Films and Coatings (Third Edition), 2010.
    [23] D.J. Smith, Reports Prog. Phys., pp. 1513-1580, 1997.
    [24] Spence, C. H. John, “Experimental high-resolution electron microscopy,” in New York: Oxford U. Press, 1980.
    [25] C. Kisielowski, B. Freitag, M. Bischoff, H. Lin, S. Lazar, G. Knippels, P. Tiemeijer, M. Stam, S. Harrach, M. Stekelenburg, M. Haider, H. Muller, P. Hartel, B. Kabius, D. Miller, I. Petrov, E. Olson, T. Donchev, E. A. Kenik, A. Lupini, J. Bentley, S. Pennycook, A. M. Minor, A. K. Schmid, T. Duden, V. Radmilovic, Q. Ramasse, R. Erni, M. Watanabe, E. Stach, P. Denes, U. Dahmen, “Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscopy with 0.5 Å information limit,” Microscopy and Microanalysis 14, pp. 469–477, 2008.
    [26] H.S.Yang, R. Malik, S. Narasimha, Y. Li, R. Divakaruni, P. Agnello, S. Allen, A. Antreasyan, J.C. Arnold, K. Bandy, M. Belyansky, A. Bonnoit, G. Bronner, V. Chan, X. Chen, Z. Chen, D. Chidambarrao, A. Chou, W. Clark, S.W. Crowder, B. Engel, H. Harifuchi, S.F. Huang, R. Jagannathan, F.F. Jamin, Y. Kohyama, H. Kuroda, C.W. Lai, H.K. Lee, W.-H. Lee, E.H. Lim, W. Lai, A. Mallikarjunan, K. Matsumoto, A. McKnight, J. Nayak, H.Y. Ng, S. Panda, R. Rengarajan, M. Steigewalt, S. Subbanna, K. Subramanian, J. Sudijono, G. Sudo. S-P. Sun, B. Tessier, Y. Toyoshima, P. Tran, R. Wise, R. Wong, I.Y. Yang, C. H. Wann, L.T. Su, M. Horstmann, Th. Feudel, A. Wei, K. Frohberg, G. Burbach, M. Gerhardt, M. Lenski, R. Stephan, K. Wieczorek, M. Schaller, H. Salz, J. Hohage, H. Ruelke, J. Klais, P. Huebler, S. Luning, R. van Bentum, G. Grasshoff, C. Schwan, E. Ehrichs, S. Goad, J. Buller, S. Krishnan, D. Greenlaw, M. Raab, N. Kepler, "Dual stress liner for high performance sub-45nm gate length SOI CMOS manufacturing," IEEE IEDM Technical Digest., pp. 1075-1077, 2004.
    [27] M. Horstmann, A. Wei, T. Kammler, J. Hntschel, H. Bierstedt, T. Feudel, K. Frohberg, M. Gerhardt, A. Hellmich, K. Hempel, J. Hohage, P. Javorka, J. Klais, G. Koerner, M. Lenski, A. Neu, R. Otterbach, P. Press, C. Reichel, M. Trentsch, B. Trui, H. Salz, M. Schaller, H.-J. Engelmann, O. Herzog, H. Ruelke, P. Hubler, R. Stephan, D. Greenlaw, M. Raab, N. Kepler, “Integration and optimization of embedded-SiGe, compressive and tensile stressed liner films, and stress memorization in advanced SOI CMOS technologies,” IEEE IEDM Technical Digest., pp. 233-236, 2005.
    [28] M. A. Korhonen, P. Børgesen, K. N. Tu, Che-Yu Li, "Stress evolution due to electromigration in confined metal lines," J. Appl. Phys., vol. 73, pp. 3790-3799, 1993.
    [29] J. T. Yue, W. P. Funsten, and R. V. Taylor, "Stress induced voids in aluminum interconnects during IC processing," IEEE Reliability Physics Symposium, 1985. 23rd Annual., pp. 126-137, 1985.
    [30] Chang-Chien Wong, Sheng-Pong Chang, Hwai-Fu Tu, Ching-Hsiang Tseng, Wei-Shou Chen, and Shoou-Jinn Chang, “Performance Enhancement of High-Current-Injected Electrically Programmable Fuse With Compressive-Stress Nitride Layer,” IEEE Electron Device Letters, Vol. 35, No. 3, pp. 297-299, 2014.
    [31] D. Anand, B. Cowan, O. Farnsworth, P. Jakobsen, S. Oakland, M. R. Ouellette, and D. L. Wheater, "An on-chip self-repair calculation and fusing methodology,” IEEE Design & Test of Computer, vol. 20, no. 5, pp. 67–75, Sep. 2003.
    [32] C. Zhang, Z. Dong, F. Lu, R. Ma, L. Wang, H. Zhao, X. Wang, X. Wang, H. Tang, and A. Wang, “Fuse-based field-dispensable ESD protection for ultra-high-speed ICs,” IEEE Electron Device Lett., vol. 35, no. 3, pp. 381–383, Mar. 2014.
    [33] A. Hoefler, C. Henson, C. N. Li, and D. G. Lin, “Analysis of a novel electrically programmable active fuse for advanced CMOS SOI one-time programmable memory applications,” Proc. IEEE 36th Eur. Solid-State Device Res. Conf., Sep. 2006, pp. 230–233, 2006.
    [34] A. Kalnitsky, I. Saadat, A. Bergemont, and P. Francis, “CoSi2 integrated fuses on poly silicon for low voltage 0.18 μm CMOS applications,” IEDM Tech. Dig., pp. 765–768, 1999.
    [35] L. J. Chen, K. N. Chen, H. H. Lin, S. L. Cheng, Y. C. Peng, G. H. Shen, and C. R. Chen, “Contact reactions and silicide formation in implanted channels under high current density,” IEEE Proc. Of the 12th International Conference on Ion Implantation Technology, pp. 837–840, 1998.
    [36] Sarvech H. Kulkarni, Zhanping Chen, Jun He, Lei Jiang, M. Brain Pedersen, Kevin Zhang, “High-Density 3-D Metal-Fuse PROM featuring 1.37μm2 1T1R Bit Cell in 32nm High-k Metal-Gate CMOS Technology, ” in 2009 Symp. VLSI Circuits, pp. 28–29, 2009.
    [37] Sarvech H. Kulkarni, Zhanping Chen, Jun He, Lei Jiang, M. Brain Pedersen, Kevin Zhang, “A 4 kb Metal-Fuse OTP-ROM Macro Featuring a 2 V Programmable 1.37 μm2 1TlR Bit Cell in 32 nm High-k Metal-Gate CMOS, ” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 863-868, Apr. 2010.
    [38] Kuei-Sheng Wu, Ching-Hsiang Tseng, Chang-Chien Wong, Sinclair Chi, Titan Su, Yensong Liu, Huan-Sheng Wei, Wai Yi Lien, Chuck Chen, “Investigation of Electrical Programmable Metal Fuse in 28nm and beyond CMOS Technology”, Proc. IEEE Int. IITC 2011, p.p. 1-3, 2011.
    [39] S. H. Kulkarni, Z. Chen, B. Srinivasan, B. Pedersen, U. Bhattacharya, K. Zhang, “Low-Voltage Metal-Fuse Technology featuring a 1.6V-Programmable 1T1R Bit Cell with an Integrated 1V Charge Pump in 22nm Tri-gate process,” in 2015 Symp. VLSI Circuits, pp. 28–29, 2015.
    [40] Sarvech H. Kulkarni, Zhanping Chen, Balaji Srinivasan, Brain Pedersen, Uddalak Bhattacharya, Kevin Zhang, “A High-Density Metal-Fuse Technology Featuring a 1.6 V Programmable Low-Voltage Bit Cell With Integrated 1 V Charge Pumps in 22 nm Tri-Gate CMOS,” IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 1003-1008, Apr. 2016.
    [41] TSMC 20nm SoC Metal-fuse solution. Retrieved July 28, 2018, from https://archive.eettaiwan.com/www.eettaiwan.com/ART_8800719509_480202_NT_4b2335e8.HTM
    [42] Z. Chen, S. H. Kulkarni, V. E. Dorgan, U. Bhattacharya, K. Zhang, “A 0.9um2 1T1R Bit Cell in 14nm SoC Process for Metal-Fuse OTP Array with Hierarchical Bitline, Bit Level Redundancy, and Power Gating, ” in 2016 Symp. VLSI Circuits, pp. 1–2, 2016.

    下載圖示 校內:2023-09-09公開
    校外:2023-09-09公開
    QR CODE