簡易檢索 / 詳目顯示

研究生: 王建勛
Wang, Chien-Hsun
論文名稱: 砷化銦/銻化砷鋁磊晶層和高介電值閘極氧化物在砷化銦基板上之研究
Study of InAs/AlAsSb Epi-Layers and High-k Gate Dielectrics on InAs Substrate
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 125
中文關鍵詞: 鰭型場效電晶體原子層沉積介面陷阱密度沉積後的退火介面覆蓋層氧化終止
外文關鍵詞: FinFET, ALD, Dit, PDA, ICL, Oxygen termination
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三五族半導體材料基於其高注射速度,可以在未來的技術使用中增加驅動電流,目前已被考慮應用在互補式金氧半導體。在晶格常數約為6.1埃的N型及P型場效電晶體中,以砷化銦(能隙為0.35電子伏特)和銻化鎵(能隙為0.73電子伏特)為基礎的通道在操作電壓為0.5伏特的應用中脫穎而出。本論文中,將探討有機金屬氣相沉積成長砷化銦、銻化鎵/銻化砷鋁及砷化銦/銻化砷鋁,暨研究高介電值閘極氧化物在砷化銦及砷化銦/銻化砷鋁介面。
    利用三五比和成長溫度的最佳化,來探究有機金屬氣相沉積成長(100)和(110)晶格方向的砷化銦,並利用此兩個晶格方向製成的金氧半導體電容,來研究鰭型場效電晶體在兩個通道方向的介面,從氧化鋁和氧化鉿在兩個晶格方向製成的金氧半導體電容之物理和電氣特性研究中,得到相當類似的介面陷阱密度。此外,也發表了利用有機金屬氣相沉積成長銻化鎵/銻化砷鋁/砷化銦和砷化銦/銻化砷鋁/砷化銦的異質結構,這個高品質的結構已透過X射線繞射分析儀中小於一百弧度秒的半高寬驗證,此外,也可以觀察到清晰且段落分明的Pendellösung條紋,並在高解析度穿透式電子顯微鏡中看到無缺陷的介面,從量產的觀點而言,這種結果顯示了三五族取代矽通道的可能性。
    改善介面陷阱密度的實驗包含了在原子層沉積前的外部及內部預先處置,鈦化金、鈀、鉑的閘極金屬,原子層沉積後的退火,原子層沉積的溫度和噴入及清淨的時間,以及導入介面覆蓋層用來改變介面陷阱密度的分布等,實驗結果顯示了改善介面陷阱密度的主要因子為原子層沉積的溫度。在砷化銦表面做氧化終止和低溫原子層沉積的氧化鉿,可以讓高介電值閘極氧化物在砷化銦介面的陷阱密度改善40倍,在砷化銦能隙中2.2 × 1011的介面陷阱密度可以展現元件等級的品質,在此介面陷阱密度下,電容-電壓曲線趨於正常符合預期模式,同時也可以觀察到電洞反轉的現象。

    III-V semiconductor materials are currently considered for CMOS implementation based on their attractive injection velocities that may help to increase the drive current in future technology nodes. InAs (bulk bandgap Eg = 0.35 eV) and GaSb (Eg = 0.73 eV) based channels are contenders at Vd of 0.5 V with both nFET and pFET channels implemented utilizing materials within the same range of lattice constant (6.1 Å). In this dissertation, we studied the MOCVD growth for the InAs, GaSb/AlAsSb, and InAs/AlAsSb on native substrates and the interface of high-k gate dielectrics on InAs and InAs/AlAsSb.
    The investigation of MOCVD growth for (100) and (110) InAs epitaxy on native substrates was done by optimizing V/III ratio and growth temperature. The following (100) and (110) InAs MOSCAP fabrication was for the interface study using InAs channel and non-planar device architecture like FinFET, consisting of two surface planes including the (100) and (110) planes. The physical and electrical characterization of Al2O3 and HfO2 on (100) and (110) n-InAs epi surfaces showed similar interface trap density (Dit) on (100) and (110) surface orientation. Therefore, GaSb/AlAs0.16Sb0.84/InAs and InAs/AlAs0.16Sb0.84/InAs heterostructures grown by MOCVD were presented. The excellent quality of the structures was confirmed by XRD rocking curves with FWHMs below 100 arc seconds for AlAs0.16Sb0.84, clear and crisp Pendellösung fringes, and HRTEM showing defect-free interfaces. From a production point of view, this demonstration shows the possibility that III-V's could replace the Si channel.
    Experiments for reducing Dit including ex-situ and in-situ pre-treatments before ALD, gate metal splits with Ti/Au, Pd, and Pt, post deposition anneal (PDA) splits after ALD, splits for ALD deposition temperature and pulse/purge time, and introducing interface cap layer (ICL) for changing Dit distribution profile showed the major factor is the ALD process temperature. InAs surface oxygen termination and low temperature atomic layer deposition of HfO2 showed improved interface trap density Dit at the high-k/InAs interface by >40× by interface engineering. With a Dit of 2.2 × 1011 cm-2 eV-1 within the InAs bandgap, device quality has been demonstrated, with C-V curves approaching normal and expected behavior, and observation of hole inversion.

    摘 要 I Abstract III 致 謝 V Content VI Figure Captions IX Table Captions XV Chapter 1 Introduction 1 1.1 Background 1 1.2 Introduction of InAs channel 1 1.3 High-k gate dielectrics 2 1.4 Introduction of atomic layer deposition (ALD) 3 1.5 Interface trap density (Dit) calculation 4 1.6 Introduction of InAs/AlAs0.16Sb0.84 heterostructure device 5 1.7 Overview of this dissertation 5 Chapter 2 The epitaxial growths of InAs, GaSb/AlAs0.16Sb0.84, and InAs/AlAs0.16Sb0.84 on InAs substrate by MOCVD 7 2.1 Introduction of the MOCVD system 7 2.1.1 Metal-Organic and Hydride sources used in this dissertation 8 2.2 Investigation of (100) and (110) InAs epitaxial growths by MOCVD 8 2.2.1 (100) InAs epitaxial growth by MOCVD 9 2.2.2 (110) InAs epitaxial growth by MOCVD 11 2.3 The epitaxial growths of GaSb/AlAs0.16Sb0.84 and InAs/AlAs0.16Sb0.84 on (100) InAs substrate by MOCVD 13 2.3.1 Experimental details 14 2.3.2 Source materials and precursor consideration 14 2.3.3 AlAs0.16Sb0.84 growth on (100) InAs substrate 16 2.3.4 PL and SIMS of AlAs0.16Sb0.84 on InAs 17 2.3.5 Epitaxial growth and characterization of heterostructures 18 2.3.6 Growth of GaSb/AlAs0.16Sb0.84/InAs heterostructures 18 2.3.7 Growth of InAs/AlAs0.16Sb0.84/InAs heterostructures 19 2.3.8 Summary 20 Chapter 3 High-k dielectrics on (100) and (110) n-InAs: Physical and Electrical Characterization 22 3.1 Introduction 22 3.2 MOSCAP fabrication process 23 3.3 Experiments 23 3.4 Physical characterization for high-k dielectrics on (100) and (110) n-InAs 24 3.5 Electrical characterization and Dit extraction for high-k dielectrics on (100) and (110) n-InAs 25 3.6 Summary 28 Chapter 4 High-k dielectrics on (100) n-InAs MOSCAPs: Experiments and Process optimization for Dit reduction 29 4.1 Introduction 29 4.2 Capacitance-Voltage (C-V) parameterization 29 4.3 The introduction of slow hole traps density 31 4.4 Experiments for ex-situ and in-situ pre-treatment before ALD 31 4.5 Experiments for the MOSCAP gate metal splits with Pd, Ti/Au, and Pt 32 4.6 Experiments for the splits of post deposition anneal (PDA) after ALD process ………………………………………………………………………………..32 4.7 Experiments for the splits of ALD deposition temperature and pulse/purge time 33 4.8 Experiments for interface cap layer (ICL) by InP cap on InAs epitaxy 33 4.9 Conclusion 34 Chapter 5 InAs hole inversion and bandgap interface trap density of 2 × 1011 cm-2 eV-1 at HfO2/InAs and HfO2/InAs/AlAs0.16Sb0.84 interfaces 36 5.1 Introduction 36 5.2 Sample preparation and fabrication for MOSCAPs 36 5.3 C-V measurement and Dit extraction for MOSCAPs 38 5.4 Conclusions 40 Chapter 6 Conclusions and Future works 41 6.1 Conclusions 41 6.2 Future works 41 References 43 Vita 123 Publication List 124

    [1] G. E. Moore, Electronics, vol. 38, 114 (1965).
    [2] D. J. Frank, "Power-constrained CMOS scaling limits," IBM J. Res. Dev., vol. 46, 235–244 (2002).
    [3] S. M. Sze and K. K. Ng, "Physics of Semiconductor Devices", 3rd edition, John Wiley & Sons, Inc., Hoboken, New Jersey, USA (2007).
    [4] ITRS (International Technology Roadmap for Semiconductors): http://www.itrs.net
    [5] D.-H. Kim, J. A. del Alamo, D. A. Antoniadis, and B. Brar, "Extraction of virtual-source injection velocity in sub-100 nm III–V HFETs," IEEE Int. Electron Devices Meet., 861–864 (2009).
    [6] J. A. del Alamo, "Nanometre-scale electronics with III–V compound semiconductors," Nature, vol. 479, 317 (2011).
    [7] D.-H Kim and J. A. del Alamo, "30 nm E-mode InAs PHEMTs for THz and future logic applications," IEEE Int. Electron Devices Meet., 719–722 (2008).
    [8] M. Radosavljevic, B. Chu-Kung, S. Corcoran, G. Dewey, M. K. Hudait, J. M. Fastenau, J. Kavalieros, W. K. Liu, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, W. Rachmady, U. Shah, and R. Chau , "Advanced high-κ gate dielectric for high-performance short-channel In0.7Ga0.3As quantum well field effect transistors on silicon substrate for low power logic applications," IEEE Int. Electron Devices Meet., 319–322 (2009).
    [9] J. A. del Alamo, D.-H. Kim, T.-W. Kim, D. Jin, and D. A. Antoniadis, "III–V CMOS: what have we learned from HEMTs?," 23rd Int. Conf. Indium Phosphide Relat. Mater. (IEEE, 2011).
    [10] G. Doornbos and M. Passlack, "Benchmarking of III–V n-MOSFET Maturity and Feasibility for Future CMOS," IEEE Electron Device Lett., vol. 31, No. 10, 1110 (2010).
    [11] S.-H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, "Quantum-Mechanical Modeling of Electron Tunneling Current from the Inversion Layer of Ultra-Thin-Oxide nMOSFET’s," IEEE Electron Device Lett., vol. 18, No. 5, 209 (1997).
    [12] G. D. Wilk, R. M. Wallace, J. M. Anthony, "High-k gate dielectrics: Current status and materials properties considerations," J. Appl. Phys., vol. 89, No. 10, 5243 (2001).

    [13] J. Robertson, "Maximizing performance for higher K gate dielectrics," J. Appl. Phys., vol. 104, 124111 (2008).
    [14] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks , R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, and K. Zawadzki, "A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging," IEEE Int. Electron Devices Meet., 247-250 (2007).
    [15] J. Robertson and B. Falabretti, "Band offsets of high K gate oxides on III-V semiconductors," J. Appl. Phys., vol. 100, 014111 (2006).
    [16] Y. Xuan, Y. Q. Wu, H. C. Lin, T. Shen, and P. D. Ye, "Submicrometer Inversion-Type Enhancement-Mode InGaAs MOSFET With Atomic-Layer-Deposited Al2O3 as Gate Dielectric," IEEE Electron Device Lett., vol. 28, No. 11, 935 (2007).
    [17] J. Kwo, D. W. Murphy, M. Hong, R. L. Opila, J. P. Mannaerts, A. M. Sergent, and R. L. Masaitis, "Passivation of GaAs using (Ga2O3)1-x(Gd2O3)x, 0≦x≦1.0 films," Appl. Phys. Lett., vol. 75, No. 8, 1116 (1999).
    [18] M. Lee, Z.-H. Lu, W.-T. Ng, D. Landheer, X. Wu, and S. Moisa, "Interfacial growth in HfOxNy gate dielectrics deposited using [(C2H5)2N]4Hf with O2 and NO," Appl. Phys. Lett., vol. 83, No. 13, 2638 (2003).
    [19] B.-Y. Tsui and H.-W. Chang, "Formation of interfacial layer during reactive sputtering of hafnium oxide," J. Appl. Phys., vol. 93, No. 12, 10119 (2003).
    [20] T. Suntola and J. Antson, U.S. Patent. No. 4,058,430 (1997).
    [21] T. Suntola and J. Antson, Finland Patent. No. 52,359 (1997).
    [22] T. Suntola, "Atomic Layer Epitaxy," Mater. Sci. Rep., vol. 4, 261 (1989).
    [23] K. Yong and J. Jeong, "Applications of atomic layer chemical vapor deposition for the processing of nanolaminate structures," Korean J. Chem. Eng., vol. 19, No. 3, 451-462 (2002).
    [24] http://www.picosun.com/en/ald/what+is+ald/
    [25] W. E. Spicer, I. Lindau, P. Skeath, and F C.Y. Su, "Unified defect model and beyond, " J. Vac. Sci. Technol., vol. 17, 1019–1027 (1980).
    [26] M. Scarrozza, G. Pourtois, M. Houssa, M. Caymax, A. Stesmans, M. Meuris, and M. M. Heyns, "A theoretical study of the initial oxidation of the GaAs(001)-β2(2×4) surface," Appl. Phys. Lett., vol. 95, 253504 (2009).
    [27] P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H.-J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, "GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition," IEEE Electron Device Lett., vol. 24, 209–211 (2003).
    [28] M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, "Surface passivation of III–V compound semiconductors using atomic-layer-deposition-grown Al2O3," Appl. Phys. Lett., vol. 87, 252104 (2005).
    [29] L. M. Terman, "An investigation of surface states at a silicon/silicon dioxide interface employing metal-oxide-silicon diodes," Solid State Electron., vol. 5, 285-299 (1962).
    [30] D. K. Schroeder, "Semiconductor Material and Device Characterization", 3rd edition, Wiley, New York, 2006.
    [31] G. Groeseneken, H. E. Maes, N. Beltran, and R. F. D. Keeersmaecker, "A reliable approach to charge-pumping measurements in MOS transistors," IEEE Trans. Electron Devices, vol. 31, 42 (1984).
    [32] E. H. Nicollian and A. Goetzberger, "The Si-SiO2 Interface-Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique," Bell sys. Tech. J., vol. 46, 1055-1133 (1967).
    [33] H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P.W. Leu, K. Ganapathi, E. Plis, H.S. Kim, S.-Y. Chen, M. Madsen, A.C. Ford, Y.-L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, " Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors," Nature, vol. 468, 286 (2010).
    [34] A. Nainani, T. Irisawa, Z. Yuan, Y. Sun, T. Krishnamohan, M. Reason, B.R. Bennett, J.B. Boos, M. Ancona, Y. Nishi, and K.C. Saraswat, "Development of high-k dielectric for Antimonides and a sub 350ºC III-V pMOSFET outperforming Germanium," IEEE Int. Electron Devices Meet., 138-141 (2010).
    [35] H. Kroemer, "The 6.1 Å family (InAs, GaSb, AlSb) and its heterostructures: a selective review," Physica E., vol. 20, 196 (2004).

    [36] G.B. Stringfellow, "Organometallic Vapor-Phase Epitaxy: Theory and Practice", New York: Academic press (1989).
    [37] C.A. Larsen, N.J. Buchan, S.H. Li and G.B. Stringfellow, "Decomposition mechanisms of tertiarybutylarsine," Journal of Crystal Growth, vol. 94, 663 (1989).
    [38] S.K. Haywood, R.W. Martin, N.J. Mason and P.J. Walker, "Growth of InAs by MOVPE: A comparative study using arsine, tertiarybutylarsine and phenylarsine," Journal of Crystal Growth, vol. 97, 489 (1989).
    [39] C.J. Vineis, C.A. Wang, and K.F. Jensen, "In-situ reflectance monitoring of GaSb substrate oxide desorption," Journal of Crystal Growth, vol. 225, 420 (2001).
    [40] F. Dimroth, C. Agert, and A.W. Bett, "Growth of Sb-based materials by MOVPE," Journal of Crystal Growth, vol. 248, 265 (2003).
    [41] C.A. Wang, "Progress and continuing challenges in GaSb-based III–V alloys and heterostructures grown by organometallic vapor-phase epitaxy," Journal of Crystal Growth, vol. 272, 664 (2004).
    [42] C. Agert, P. Lanyi, and A.W. Bett, "MOVPE of GaSb, (AlGa)Sb and (AlGa)(AsSb) in a multiwafer planetary reactor," Journal of Crystal Growth, vol. 225, 426 (2001).
    [43] A. C. Jones, J. Auld, S.A. Rushworth, and G.W. Critchiow, "Growth of aluminium films by low pressure chemical vapour deposition using tritertiarybutylaluminium," Journal of Crystal Growth, vol. 135, 285 (1994).
    [44] Ch. Giesen, M.M. Beerbom, X.G. Xu, and K. Heime, "MOVPE of AlAsSb using tritertiarybutylaluminum," Journal of Crystal Growth, vol. 195, 85 (1998).
    [45] J. Nishizawa and T. Kurabayashi, "On the Reaction Mechanism of GaAs MOCVD," J. Electrochem. Soc., vol. 130, 412 (1983).
    [46] G.B. Stringfellow, "Organometallic Vapor-Phase Epitaxy: Theory and Practice," 2nd ed., Academic Press, San Diego, CA, 1999, p. 260.
    [47] J.G. Cederberg, M.J. Hafich, R.M. Biefeld, and M. Palmisiano, "The preparation of InGa(As)Sb and Al(Ga)AsSb films and diodes on GaSb for thermophotovoltaic applications using metal-organic chemical vapor deposition," Journal of Crystal Growth, vol. 248, 289 (2003).
    [48] S. Salim, C.A. Wang, R.D. Driver, K.F. Jensen, "In situ concentration monitoring in a vertical OMVPE reactor by fiber-optics-based Fourier transform infrared spectroscopy," Journal of Crystal Growth, vol. 169, 443 (1996).

    [49] C.A.B. Ball and J.H. Van Der Merwe, "The Growth of Dislocation-Free Layers," Dislocations in Solids, vol. 6, New York: North-Holland Publishing Company, 121 (1983).
    [50] R. Contreras-Guerrero, S. Wang, M. Edirisooriya, W. Priyantha, J. S. Rojas-Ramirez, K. Bhuwalka, G. Doornbos, M. Holland, R. Oxland, G. Vellianitis, M. Van Dal, B. Duriez, M. Passlack, C.H. Diaz, and R. Droopad, "Growth of heterostructures on InAs for high mobility device applications," Journal of Crystal Growth, vol. 378, 117 (2013).
    [51] S.W. Chang, X. Li, R. Oxland, S.W. Wang, C.H. Wang, R. Contreras-Guerrero, K.K. Bhuwalka, G. Doornbos, T. Vasen, M.C. Holland, G. Vellianitis, M.J.H. van Dal, B. Duriez, M. Edirisooriya, J.S Rojas-Ramirez, P. Ramvall, S. Thoms, U. Peralagu, C.H. Hsieh, Y.S. Chang, K.M. Yin, E. Lind, L.-E. Wernersson, R. Droopad, I. Thayne, M. Passlack, and C.H. Diaz, "InAs N-MOSFETs with record performance of Ion = 600 μA/μm at Ioff = 100 nA/μm (Vd = 0.5 V)," IEEE Int. Electron Devices Meet., 417-420 (2013).
    [52] P. D. Ye, "Main determinants for III–V metal-oxide-semiconductor field-effect transistors (invited)," J. Vac. Sci Technol. A, vol. 26, No. 4, 697 (Jul/Aug 2008).
    [53] H. Zhao, J. Huang, Y.-T Chen, J. H. Yum, Y. Wang, F. Zhou, F. Xue, and Jack C. Lee, "Effects of gate-first and gate-last process on interface quality of In0.53Ga0.47As metal-oxide-semiconductor capacitors using atomic-layer-deposited Al2O3 and HfO2 oxides," Appl. Phys. Lett., vol. 95, 253501 (2009).
    [54] H. D. Trinh, E. Y. Chang, P. W. Wu, Y. Y. Wong, C. T. Chang, Y. F. Hsieh, C. C. Yu, H. Q. Nguyen, Y. C. Lin, K. L. Lin, and M. K. Hudait, "The influences of surface treatment and gas annealing conditions on the inversion behaviors of the atomic-layer-deposition Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor capacitor," Appl. Phys. Lett., vol. 97, 042903 (2010).
    [55] Z. Liu, S. Cui, P. Shekhter, X. Sun, L. Kornblum, J. Yang, M. Eizenberg, K. S. Chang-Liao, T. P. Ma, "Effect of H on interface properties of Al2O3/In0.53Ga0.47As," Appl. Phys. Lett., vol. 99, 222104 (2011).

    [56] R. Suzuki, N. Taoka, M. Yokoyama, S. Lee, S. H. Kim, T. Hoshii, T. Yasuda, W. Jevasuwan, T. Maeda, O. Ichikawa, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, "1-nm-capacitance-equivalent-thickness HfO2/Al2O3I/InGaAs metal-oxide-semiconductor structure with low interface trap density and low gate leakage current density," Appl. Phys. Lett., vol. 100, 132906 (2012).
    [57] H. D. Trinh, G. Brammertz, E. Y. Chang, C. I. Kuo, C. Y. Lu, Y. C. Lin, H. Q. Nguyen, Y. Y. Wong, B. T. Tran, K. Kakushima, and H. Iwai, "Electrical Characterization of Al2O3/n-InAs Metal–Oxide–Semiconductor Capacitors With Various Surface Treatments," IEEE Electron Device Lett., vol. 32, No. 6, 752 (2011).
    [58] R. Timm, A. Fian, M. Hjort, C. Thelander, E. Lind, J. N. Andersen, L.-E. Wernersson, and A. Mikkelsen, " Reduction of native oxides on InAs by atomic layer deposited Al2O3 and HfO2," Appl. Phys. Lett., vol. 97, 132904 (2010).
    [59] A. P. Kirk, M. Milojevic, J. Kim, and R. M. Wallace, "An in situ examination of atomic layer deposited alumina/InAs(100) interfaces," Appl. Phys. Lett., vol. 96, 202905 (2010).
    [60] J. Wu, E. Lind, R. Timm, M. Hjort, A. Mikkelsen, and L.-E. Wernersson, "Al2O3/InAs metal-oxide-semiconductor capacitors on (100) and (111)B substrates," Appl. Phys. Lett., vol. 100, 132905 (2012).
    [61] H.-Y. Lin, S.-L. Wu, C.-C. Cheng, C.-H. Ko, C. H. Wann, Y.-R. Lin, S.-J. Chang, and T.-B. Wu, "Influences of surface reconstruction on the atomic-layer-deposited HfO2/Al2O3/n-InAs metal-oxide-semiconductor capacitors," Appl. Phys. Lett., vol. 98, 123509 (2011).
    [62] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Trans. Electron Devices, vol.47, pp. 2320-2325 (DEC 2000).
    [63] J. Kedzierski, D.M. Fried, E.J. Nowak, T. Kanarsky, J. H. Rankin, H. Hanafi, W. Natzle, D. Boydt, Y. Zhang, R. A. Roy, J. Newbury, C. Yu, Q. Yang, P. Saunders, C. P. Willets, A. Johnson, S. P. Cole, H. E. Young, N. Carpenter, D. Rakowski, B. A. Rainey, P. E. Cottrell, M. Ieong, and H.-S. P. Wong, "High-performance symmetric-gate and CMOS-compatible Vt asymmetric-gate FinFET devices," IEEE Int. Electron Devices Meet., 437-440, (2001).

    [64] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.-Y. Yang, C. Tabery, C. Ho, Q. Xiang, T.-J. King, J. Bokor, C. Hu, M.-R. Lin, and D. Kyser, "FinFET scaling to 10 nm gate length," IEEE Int. Electron Devices Meet., 251-254 (2002).
    [65] B. Shin, J.B. Clemens, M.A. Kelly, A.C. Kummel, and P.C. Mclntyre, "Arsenic decapping and half cycle reactions during atomic layer deposition of Al2O3 on In0.53Ga0.47As(001)," Appl. Phys. Lett., vol. 96, 252907 (2010).
    [66] H. D. Trinh, E. Y. Chang, Y. Y. Wong, C. C. Yu, C. Y. Chang, Y. C. Lin, H. Q. Nguyen, and B. T. Tran, "Effects of Wet Chemical and Trimethyl Aluminum Treatments on the Interface Properties in Atomic Layer Deposition of Al2O3 on InAs," Jap. J. Appl. Phys., vol. 49, 111201 (2010).
    [67] A. Ohtake, "Surface reconstructions on GaAs(001)," Surface Science Reports, vol. 63, pp. 295-327 (2008).
    [68] S. Nannarone, M. Pedio, "Hydrogen chemisorption on III–V semiconductor surfaces," Surface Science Reports, vol. 51, pp. 1-149 (2003).
    [69] V. Ariel-Altschul, E. Finkman, and G. Bahir, "Approximations for carrier density in nonparabolic semiconductors," IEEE Trans. Electron Devices, vol. 39, pp. 1312-1316 (JUN 1992).
    [70] M. Egard, L. Ohlsson, B. M. Borg, F. Lennck, R. Wallenberg, L.-E. Wernersson, and E. Lind, "High Transconductance Self-Aligned Gate-Last Surface Channel Ino.53Gao.47As MOSFET," IEEE Int. Electron Devices Meet., 303-306 (2011).
    [71] E. H. Nicollian and J. R. Brews, "MOS (Metal Oxide Semiconductor) Physics and Technology," Wiley, New York, 1991.
    [72] C. C.-H. Hsu and C. T. Sah, "Generation-annealing of oxide and interface traps at 150 and 298 K in oxidized silicon stressed by Fowler-Nordheim electron tunneling," Solid State Electron., vol. 31, 1003-1007 (1988).
    [73] X. Sun, C. Merckling, G. Brammertz, D. Lin, J. Dekoster, S. Cui, and T. P. Ma, "Improved AC conductance and Gray-Brown methods to characterize fast and slow traps in Ge metal–oxide–semiconductor capacitors," Appl. Phys. Lett., vol. 111, 054102 (2012).
    [74] B. Brennan, D. M. Zhernokletov, H. Dong, C. L. Hinkle, J. Kim, and R. M. Wallace, "In situ surface pre-treatment study of GaAs and In0.53Ga0.47As," Appl. Phys. Lett., vol. 100, 151603 (2012).

    [75] H.-D. Trinh, Y.-C. Lin, H.-C. Wang, C.-H. Chang, K. Kakushima, H. Iwai, T. Kawanago, Y.-G. Lin, C.-M. Chen, Y.-Y. Wong, G.-N. Huang, M. Hudait, and E. Y. Chang, "Effect of Postdeposition Annealing Temperatures on Electrical Characteristics of Molecular-Beam-Deposited HfO2 on n-InAs/InGaAs Metal–Oxide–Semiconductor Capacitors," Appl. Phys. Express., vol. 5, 021104 (2012).
    [76] M. P. J. Punkkinen, P. Laukkanen, J. Lang, M. Kuzmin, M. Tuominen, V. Tuominen, J. Dahl, M. Pessa, M. Guina, K. Kokko, J. Sadowski, B. Johansson, I. J. Vayrynen, and L. Vitos, "Oxidized In-containing III-V(100) surfaces: Formation of crystalline oxide films and semiconductor-oxide interfaces," Phys. Rev. B, vol. 83, 195329 (2011).
    [77] W. Priyantha, G. Radhakrishnan, R. Droopad, and M. Passlack, "In-situ XPS and RHEED study of galliumoxide on GaAs deposition by molecular beam epitaxy ," Journal of Crystal Growth, vol. 323, 103 (2011).
    [78] M. J. Hale, S. I. Yi, J. Z. Sexton, A. C. Kummel, and M. Passlack, "Scanning tunneling microscopy and spectroscopy of gallium oxide deposition and oxidation on GaAs(001)-c(2×8)/(2×4) ," J. Chem. Phys., vol. 119, 6719 (2003).
    [79] E. Lind, Y.-M. Niquet, H. Mera, and L.-E. Wernersson, "Accumulation capacitance of narrow band gap metal-oxide-semiconductor capacitors," Appl. Phys. Lett., vol. 96, 233507 (2010).
    [80] E. H. Nicollian and J. R. Brews, "MOS Physics and Technology," Wiley, New York, 1982, p. 139.

    無法下載圖示 校內:2019-07-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE