簡易檢索 / 詳目顯示

研究生: 徐正青
Hsu, Cheng-Ching
論文名稱: 應用於放電加工機之多相式電流源電路研製
Buck-Based Current Source with Energy-Recovery Scheme for Electrical Discharge Machine
指導教授: 林瑞禮
Lin, Ray-Lee
陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 75
中文關鍵詞: 放電加工機多相式電流源能量回收
外文關鍵詞: electrical discharge machine, EDM, multi-phase, energy-recovery, current source
相關次數: 點閱:104下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一應用於放電加工機且具備能量回收功能、操作於連續導通模式之四相式電流源電路。因放電加工機所需之加工電流為脈波式電流,故電流源電路之輸出電流上升速率為重要之考量因素。在不改變電感值的情形下,應用錯相式技術可以增加輸出電流之上升速率。
    本論文所提出之能量回收機制提供電感器所儲存之能量一釋放路徑。當放電加工進行當中時,放電間隙可以視為一個具低電阻值的電阻器。但當放電電流截停或發生斷弧時,此放電間隙即呈現高阻抗狀態。如果此時電感器仍儲存有能量,放電間隙電壓將會因為電感電流無法續流而急遽升高進而使電路損壞。本論文所提出之能量回收機制可將電感器上儲存之能量回送至輸入端之電容器,使其可再次被利用,同時解決電感電流續流的問題。
    由實驗結果可知,所提出電路的輸出電流可以被調節,同時具備高的輸出電流上升速率。此外,從實驗結果之波型可以發現,本論文所提出之能量回收機制提供電感器所儲存之能量主要釋放路徑,確能達到預期的效果。

    This thesis presents the interleaved four-phase buck-based current source in continuous conduction mode with proposed energy-recovery scheme for the electrical discharge machine. A pulse output current is required in the discharge machining. Therefore, the output current slew rate of the current source is of concern. With the use of interleaving technique, the output slew rate of the buck-based current source can be improved with the same inductance value.
    The proposed energy-recovery schemes provide the path for the inductor to release its stored energy. When discharge occurs, the gap behaves as a resistor with low resistance. However, the gap reverts to the high impedance state provided by the dielectric when the machining current is off. The energy stored in the inductor is not able to release due to the gap in high impedance state thus induces high di/dt, which can damage the circuit. With the proposed energy-recovery schemes, the energy stored in the inductor can be recovered to the input capacitance to avoid high di/dt.
    The experimental results show that the average output current can be regulated and the output current slew rate is high. The experimental results also validate that the proposed energy-recovery schemes provide the path for the inductor to release stored energy when the output current is off.

    Chapter 1 Introduction 1.1. Background........................................................1 1.2. Motivation........................................................4 1.3. Thesis Outline....................................................4 Chapter 2 Proposed Buck-Based Current Source with Energy-Recovery Schemes......................................................5 2.1. Introduction......................................................5 2.2. Gap Equivalent Circuit of Discharge Phenomenon....................7 2.3. Buck-Based Current Source........................................11 2.3.1. Single-Phase Buck-Based Current Source.......................11 2.3.2. Interleaved Four-Phase Buck-Based Current Source.............17 2.4. Proposed Isolated Energy-Recovery Scheme.........................21 2.5. Proposed Center-Tapped Energy-Recovery Scheme....................30 2.6. Proposed Interleaved Four-Phase Buck-Based Current Source........38 2.7. Summary..........................................................42 Chapter 3 Analysis and Design of Interleaved Four-Phase Prototype Circuit.....................................................43 3.1. Introduction.....................................................43 3.2. Design and Analysis of Interleaved Four-Phase Prototype Circuit..43 3.2.1. Inductance Design............................................44 3.2.2. Design of Duty Cycle.........................................46 3.2.3. Design of Proposed Energy-Recovery Schemes...................48 3.3. Interleaved Four-Phase Current Source with Peak Current Mode Control..........................................................49 3.4. Summary..........................................................55 Chapter 4 Implementation and Experimental Results.....................56 4.1. Introduction.....................................................56 4.2. Implementation of Interleaved Four-Phase Buck-Based Current Source with Proposed Isolated Energy-Recovery Schemes............57 4.3. Experimental Results.............................................60 4.4. Summary..........................................................70 Chapter 5 Conclusions and Future Work.................................71 References............................................................73

    [1] Carl Sommer and Steve Sommer, Complete EDM Handbook, Reliable EDM, Inc., 2005. http://www.reliableedm.com.

    [2] Hoang Vinh Sinh, Banh Tien Long, and Nguyen Cong Hien “A study of method to control EDM process,” http://www.ritsumei.ac.jp/acd/cg/se/rt/mems/report/
    HUT-RITS-2004/Proc/HoangVinhSinh.pdf

    [3] B. Sen, N. Kiyawat, P. K. Singh, S. Mitra, J. H. Ye, and P. Purkait, “Developments in electric power supply configurations for electrical-discharge-machining (EDM),” The Fifth International Conference on Power Electronics and Drive Systems, vol. 1, pp. 659-664, Nov. 2003.

    [4] C. M. F. Odulio, L. G. Sison, and M. T. Escoto, “Regenerative clamp as reset winding in flyback converters for EDM applications,” IEEE International Conference on Industrial Technology, vol. 1, pp. 510-513, Dec. 2004.

    [5] R. Casanueva, M. Ochoa, F. J. Azcondo, and S. Bracho, “Current mode controlled LCC resonant converter for electrical discharge machining applications,” Proceedings of IEEE International Symposium on Industrial Electronics, vol. 2, pp. 505-510, Dec. 2000.

    [6] S. Evertz, Electrical Discharge Machining: exposure assessment using emission and emission based monitoring, Ph.D. Dissertation, January 2003. http://sylvester.bth.rwth-aachen.de/dissertationen/2003/039/03_039.pdf

    [7] N. Saito, K. Kobayashi and T. Oizumi, “Method and apparatus for electrical discharge machining,” U.S. Patent 3 999 028, 1976.

    [8] Toshihiko Furukawa, “EDM pulse generator with a variable output inductor for producing pulse with gradually rising edges,” U.S. Patent 4 441 005, 1984.

    [9] Y. Ozaki, K. Tsurumoto, T. Yatomi and M. Yamamoto, “Electrical discharge machine with control of the machining pulse’s current value in accordance with the delay time,” U.S. Patent 4 695 696, 1987.

    [10] R. Casanueva, F. J. Azcondo, C. Branas and S. Bracho, ”Analysis, design and experimental results of a high-frequency power supply for spark erosion,” IEEE Transactions on Power Electronics, Volume 20, Mar 2005, pp. 361-369.

    [11] R. Casanueva, L. A. Chiquito, F. J. Azcondo, and S. Bracho, “Current source LCC resonant converter for an EDM power supply,” Proceedings of IEEE IECON '01, pp. 1027-1032.

    [12] S. Chakraborty, Amit Kumar Jain and N. Mohan, “A novel power distribution system using a central buck-based current source for multiple individually regulated outputs,” Volume 3, PESC '03, pp. 1379-1383.

    [13] A. Behrens, J. Ginzel, and F. L. Bruhns, “Arc detection in electro-discharge machining,” ISEM XIII Conf. Proc., 2001, pp. 283–294.

    [14] A. Behrens, M. P. Witzak, and F. L. Bruhns, “Control and prediction of course of spark erosion process on spark erosion machine,” German Patent DE19 512 291, 1995.

    [15] W. A. Tabisz, M. M. Jovanovic, and F. C. Lee, “Present and future of distributed power systems,” Proceedings of IEEE APEC 1992, pp. 11-18.

    [16] Ch. Chang and M. A. Knights, “Interleaving technique in distributed power conversion systems,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 42, pp. 245-251, May 1995.

    [17] M. T. Zhang, M. M. Jovanovic, and F. C. Y. Lee, “Analysis and evaluation of interleaving techniques in forward converters,” IEEE Transactions on Power Electronics, vol. 13, pp. 690–698, July 1998.

    [18] R. Casanueva, F. J. Azcondo, C. Branas, and S. Bracho, “High spark, low loss - paralleled LCSCp resonant converters for spark erosion applications,” IEEE Trans. Magn., on Industry Applications, vol. 12, pp. 43-51, March-April 2006.

    [19] P. L. Wong, Performance Improvements of Multi-Channel Interleaving Voltage Regulator Modules with Integrated Coupling Inductors, Ph.D. Dissertation, Virginia Tech ,2001.

    [20] Mark Hartman, “Inside Current-Mode Control,” National Semiconductor, http://www.national.com/appinfo/power/files/PowerDesigner_106.pdf

    下載圖示 校內:2007-12-15公開
    校外:2007-12-15公開
    QR CODE