| 研究生: |
楊承翰 Yang, Cheng-Han |
|---|---|
| 論文名稱: |
非離子型界面活性劑對略親水酚類化合物萃取技術之研究 Study on nonionic surfactant-based extraction technique for slightly hydrophilic phenolic compounds |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 界面活性劑 、微胞溶液 、雲點現象 、增濃因子 、水相萃取 、平衡分佈係數 、酚 |
| 外文關鍵詞: | surfactant, micelle solution, phenol, clouding phenomena, water phase extraction, equilibrium partition coefficient, preconcentration factor |
| 相關次數: | 點閱:137 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
界面活性劑分子是由疏水基及親水基兩部份構成,且在水溶液中,通常可形成所謂的微胞結構。在適當的界面活性劑微胞溶液並經由溫度的改變,界面活性劑水溶液會呈現所謂的雲點現象及相分離的行為。正因如此,可將界面活性劑擁有的這些特殊性質對於水中的有機污染物進行萃取的動作。在本次研究中,我們利用三種非離子型界面活性劑,亦即Tergitol 15-S-5、Tergitol 15-S-7以及Tergitol 15-S-9,再藉由醇類物質及鹽類的添加,對於九種酚類化合物來進行簡單的萃取,觀察萃取之後的增濃因子為何。除此之外,也對於產生相分離之後的系統進行濃度分析得出兩相濃度的分佈,並研究平衡分佈係數與增濃因子之間的關係。在實驗過程中,使用紫外光偵測器搭配液相層析儀進行定性定量以及兩相平衡之後的濃度分析。
從研究的結果中,可以發現增濃因子與平衡分佈係數有某些關聯性。增濃因子下降時,其在界面活性劑兩相之間的平衡分佈係數也會變小,反之亦然。此外,被萃取的酚類化合物平衡分佈係數的對數值與其log Kow值有線性關係,對於在進行萃取之前可利用其log Kow值來大概預知哪些物質的增濃因子。
Surfactant molecules consist of hydrophobic moiety and hydrophilic moiety. In aqueous solutions, surfactant molecules aggregate to form ordered structures, such as micelle. Under proper conditions, micellar solutions can exhibit clouding phenomena and phase separate, which can be applied in extracting trace organic pollutants in water. In this work, three nonionic surfactants, such as Tergitol 15-S-5, Tergitol 15-S-7 and Tergitol 15-S-9, with molecular similarities are employed along with addition of alcohols and electrolytes to carry out preconcentration of nine kinds of phenolic compounds. The concentrations of these phenolic compounds in surfactant-rich and surfactant-lean phases after phase separation are analyzed with the HPLC equipped with UV/Vis detection. It is found that the logarithm of the distribution constants of these phenolic compounds in these two phase systems is a linear function of logarithm of their octanol-water distribution constant, namely log Kow value. This relationship provides great empirical convenience to predict the performance of surfactants in extraction and preconcentration of phenolic compounds.
G. Alcaraz, J. Kinet, N. Kumar, S. A. Wank, and H. Metzger, “Phase Separation of yhe Receptor for Immunoglobulin E and Its Subunits in Triton X-114,” J. Biol. Chem., 259, 14922-14927 (1984).
A. M. Al-Ghamdi and H. A. Nasr-El-Din, “Effect of oilfield chemicals on the cloud point of nonionic surfactants,” Colloids and Surfaces A, 125, 5-18 (1997).
M. C. Alonso, D. Puig, I. Silgoner, M. Grasserbauer, and D. Barcel, “Determination of priority phenolic compounds in soil samples by various extraction methods followed by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry,” J. Chromatrogr. A, 823, 231-239 (1998).
D. N. Armentrout, J. D. McLean, and M. W. Long, “Trace Determination of phenolic compounds in Water by Reversed Phase Liquid Chromatography with Electrochemical Detection Using a Carbon-Polyethylene Tubular Anode,” Anal. Chem., 71, 1039-1045 (1979).
E. Azaz and M. Donbrow, “Solubilisation of phenolic compounds in non-ionic surface active agents: I. Binding patterns and parameters of phenols, cresols, and xylenols.,” J. Colloid Interface Sci., 57, 11-19 (1976).
D. Bai, J. Li, S. B. Chen, and B. H. Chen, “A Novel Cloud-Point Extraction Process for Preconcentrating Selected Polycyclic Aromatic Hydrocarbons in Aqueous Solution,” Environ. Sci. Technol., 35, 3936-3940 (2001).
V. D. Barrera-Garca, R. D. Gougeon, A. Voilley, and D. Chassagne, “Sorption Behavior of Volatile Phenols at the Oak Wood/Wine Interface in a Model System,” J. Agric. Food Chem., 54, 3982-3989 (2006).
R. B. Bird, W. E. Stewart, and E. N. Lightfoot, “Transport Phenomena,” Wiley, NewYork (1960).
D. Blankschtein, G. M. Thurston, and G. B. Benedek, “Phenomenological Theory of Equilibrium Thermodynamic Properties and Phas Separation of Micellar Solutions,” J. Chem. Phys., 85, 7268-7288 (1986).
C. Bordier, “Phase Separation of Integral Membrane Proteins in Triton X-114 Solution,” J. Biol. Chem., 256, 1604-1607 (1981).
K. D. Buchholz and J. Pawliszyn, “Optimization of Solid-Phase Microextraction Conditions for Determination of Phenols,” Anal. Chem., 66, 160-167 (1994).
R. Carabias-Martnez, E. Rodrguez-Gonzalo, B. Moreno-Cordero, J. L. Peŕez-Pavn, C. Garca-Pinto, and E. Fernndez Laespada, “Surfactant cloud point extraction and preconcentration of organic compounds prior to chromatography and capillary electrophoresis,” J. Chromatogr. A, 902, 251-265 (2000).
R. Carabias-Martnez, E. Rodrguez-Gonzalo, J. Domnguez-lvarez, C. Garca Pinto, and J. Hernndez-Mndez, “Prediction of the behaviour of organic pollutants using cloud point extraction,” J. Chromatogr. A, 1005, 23-34 (2003).
I. Casero, D. Sicilia, S. Rubio, and D. Prez-Bendito, “An Acid-Induced Phase Cloud Point Separation Approach Using Anionic Surfactants for the Extraction and Preconcentration of Organic Compounds,” Anal. Chem., 71, 4519-4526 (1999).
M. Castillo, D. Puig, and D. Barcel, “Determination of priority phenolic compounds in water and industrial effluents by polymeric liquid-soild extraction cartridges using automated sample preparation with extraction columns and liquid chromatography Use of liquid-soild extraction cartridges for stabilization of phenols,” J. chromatogr. A, 778, 301-311 (1997).
M. Corti, V. DeGiorgio, J. B. Hayter, and M. Zulanf, “Micelle structure in isotropic C12E8 amphiphile solutions,” Chem. Phys. Lett., 109, 579-583 (1984).
J. L. Collet and L. Koo, “Interaction of substituted benzoic acids from micellar solutions of polysorbate 20,” J. pharmac. Sci., 64, 1253-1255 (1975).
V. DeGiorgio, R. Piazza, M. Corti, and C. Minero, “Critical properties of nonionic micellar solutions,” J. Chem. Phys., 82, 1025-1031 (1985).
A. Egizabal, O. Zuloaga, N. Etxebarria, L. A. Fernndez, and J. M. Madariaga, “Comparison of microwave-assisted extraction and Soxhlet extraction for phenols in soil samples using experimental designs,” Analyst, 123, 1679-1684 (1998).
EPA method 604, Phenols in Federal Register, Friday October 26, 1984, Environmental Protection Agency, Part III, 40 CFR Part 136, pp. 58-66.
EPA method 8041 of SW-846, Phenols by Gas Chromatography:Capillary Column Technique, US Environmental Protection Agency, Washington, DC, January 1995, pp. 1-28.
Z. S. Ferrera, C. P. Sanz, C. M. Santana, and J. J. Santana-Rodrguez, “The use of micellar systems in the extraction and pre-concentration of organic pollutants in environmental samples,” Trends in Anal. Chem., 23, 469-479 (2004).
A. E. Fernndez, Z. S. Ferrera, and J. J. Santana-Rodrguez, “Determination of polychlorinated biphenyls by liquid chromatography following cloud-point extraction,” Anal. Chim. Acta, 358, 145-155 (1998).
A. E. Fernndez, Z. S. Ferrera, and J. J. Santana-Rodrguez, “Application of cloud-point methodology to the determination of polychlorinated dibenzofurans in sea water by high-performance liquid chromatography,” Analyst, 124, 487-491 (1999).
O. Fiehn and M. Jekel, “Analysis of phenolic compounds fin industrial wastewater with high performance liquid chromatography and post-column reaction detection,” J. Chromatogr. A., 769, 189-200 (1997).
R. P. Frankewich and W. L. Hinze, “Evaluation and Optimization of the Factors Affecting Nonionic Surfactant-Mediated Phase Separations,” Anal. Chem., 66, 944-954 (1994).
Y. S. Fung and Y. H. Long, “Determination of phenols in soil by supercritical fluid extraction–capillary electrochromatography,” J. Chromatogr. A, 907, 301-311 (2001).
M. T. Galceran and O. Juregui, “Determination of phenols in sea water by liquid chromatography with electrochemical detection after enrichment by using solid-phase extraction cartridges and disks,” Anal. Chim. Acta, 304, 75-84 (1995).
B. R. Ganong and J. P. Delmore, “Phase separation temperatures of mixtures of Triton X-114 and Trition X-45: Application to protein separation,” Anal. Biochem., 193, 35-37 (1991).
M. T. Garca-Snchez, Jos Luis Prez Pavn, and B. M. Cordero, “Continuous membrane extraction of phenols from crude oils followed by high-performance liquid chromatographic determination with electrochemical detection,” J. Chromatogr. A, 766, 61-69 (1997).
E. R. Gonzalo, Jos Luis Prez Pavn, J. Ruzicka, and G. D. Christian, “Flow-injection analysis determination of phenols in kerosene and naphtha by membrane extraction-preconcentration,” Anal. Chim. Acta, 259, 37-44 (1992).
J. B. Green, B. K. Stierwalt, J. A. Green, and P. L. Grizzle, “Analysis of polar compound classes in SRC-II liquids comparison of non-aqueous titrametric, i.r. spectrometric and h.p.l.c. methods,” Fuel, 64, 1571-1580 (1985).
T. Gu and P. A. Galera-Gmez, “The effect of different alcohols and other polar organic additives on the cloud point of Triton X-100 in water,” Colloids and Surfaces A, 147, 365-370 (1999).
N. D. Gullickson, J. F. Scamehorn, and J. H. Harwell, “In Surfactant-Based Separation Process,” Marcel Dekker., New York, 139-152 (1989).
O. P. Heemken, N. Theobald, and B. W. Wenclawiak, “Comparison of ASE and SFE with Soxhlet, Sonication, and Methanolic Saponification Extractions for the Determination of Organic Micropollutants in Marine Particulate Matter,” Anal. Chem., 69, 2171-2180 (1997).
W. L. Hinze and E. Pramauro, “A critical-review of surfactant-mediated phase separation(cloud point extraction)-theory and applications,” Crit. Rev. Anal. Chem., 24, 133-177 (1993).
W. J. Horvath and C. W. Huie, “Salting-out surfactant extraction of porphyrins and metalloporphyrin from aqueous non-ionic surfactant solutions,” Talanta, 39, 487-492 (1992).
O. Juregui, E. Moyano, and M. T. Galceran, “Liquid chromatography–atmospheric pressure chemical ionization mass spectrometry for chlorinated phenolic compounds Application to the analysis of polluted soils,” J. Chromatogr. A, 823, 241-248 (1998)
X. Jin, M. Zhu, and E. D. Conte, “Surfactant-Mediated Extraction Technique Using Alkyltrimethylammonium Surfactants: Extraction of Selected Chlorophenols from River Water,” Anal. Chem., 71, 514-517 (1999).
J. Kronholm, P. Revilla-Ruiz, S. P. Porras, K. Hartonen, R. Carabias-Martnez, and M. Riekkola, “Comparison of gas chromatography–mass spectrometry and capillary electrophoresis in analysis of phenolic compounds extracted from solid matrices with pressurized hot water,” J. Chromatogr. A, 1022, 9-16 (2004).
G. Lamprecht and J. F. K. Huber, “Ultratrace analysis of phenols in water using high-performance liquid chromatography with on-line reaction detection,” J. Chromatogr. A., 667, 47-57 (1994).
J. L. Li and B. H. Chen, “Equilibrium partition of polycyclic aromatic hydrocarbons in a cloud-point extraction process,” J. Colloid Interface Sci., 263, 625-632 (2003).
X. Li, Z. Zeng, and J. Zhou, “High thermalstable sol-gel-coated calyx[4]arene fiber for solid-phase microextraction of chlorophenols,” Anal. Chimic. Acta, 509, 27-37 (2004).
D. R. Lide, “CRC handbook of chemistry and physics (85th ed),” Ohio: CRC Press, Cleveland (1977).
B. Lindman and H. Wennerstrm, “Nonionic Micelles Grow with Increasing Temperature,” J. Phys. Chem., 95, 6053-6054 (1991).
M. P. Llompart, R. A. Lorenzo, and R. Cela, “Optimization of supercritical fluid extraction of phenol and cresols in soil samples,” J. Chromatogr. A, 723, 123-134 (1996)
M. P. Llompart, R. A. Lorenzo, R. Cela, K. Li, Jacqueline M. R. Blanger, and J. R. Jocelyn Par, “Evaluation of supercritical fluid extraction, microwave assisted extraction and sonication in the determination of some phenolic compounds from various soil matrices,” J. Chromatogr. A, 774, 243-251 (1997).
D. Louch, S. Motlagh, and J. Pawliszyn, “Dynamics of Organic Compound Extraction from Water Using Liquid-Coated Fused Silica Fibers,” Anal. Chem., 64, 1187-1199 (1992).
K. Miyake, N. Mizuno, and H. Terada, “Method for Determination of Partition Coefficients by High-Performance Liquid Chromatography on an Octadecylsilane Column. Examination of Its Applicability,” Chem. Pharm., 34, 4787-4796 (1986).
J. H. Montgomery, “Groundwater chemicals desk reference (3rd ed),” CRC Lewis Publishers, Boca Raton (2000).
P. Nilsson, H. Wennerstrm, and B. Lindman, “Structure of Micellar Solutions of Nonionic Surfactants. Nuclear Magnetic Resonance Self-Diff usion and Proton Relaxation Studies of Poly(ethy1ene oxide) Alkyl Ethers,” J. Phys. Chem., 87, 1377-1385 (1983).
T. Okada, “Temperature-Induced Phase Separation of Nonionic Polyoxyethylated Surfactant and Application to Extraction of Metal Thiocyanates,” Anal. Chem., 64, 2138-2142 (1992).
S. Y. Patro and T. M. Przybycien, “Self-Interaction Chromatography: A Tool for the Study of Protein-Protein Interactions in Bioprocessing Environments,” Biotechnol. and Bioengin., 52, 185-191 (1996).
W. C. Preston, “Some Correlating Principles of Detergent Action” J. Phys. Colloid Chem., 52, 84-97 (1948).
D. Puig and D. Barcel, “Comparative study of on-line solid phase extraction followed by UV and electrochemical detection in liquid chromatography for the determination of priority phenols in river water samples,” Anal. Chim. Acta, 311, 63-69 (1995).
D. Puig and D. Barcel, “Determination of phenolic compounds in water and waste water,” Trends in Anal. Chem., 15, 362-375 (1996).
G. L. Puma and P. L. Yue, “Photocatalytic oxidation of chlorophenols in single- component and multicomponent systems,” Ind. Eng. Chem. Res., 38, 3238-3245 (1999).
F. H. Quina and W. L. Hinze, “Surfactant-Mediated Cloud Point Extractions: An Environmentally Benign Alternative Separation Approach,” Ind. Eng. Chem. Res., 38, 4150-4168 (1999).
I. Rodrguez, M. P. Llompart, and R. Cela., “Solid-phase extraction of phenols,” J. Chromatograph. A, 885, 291-304 (2000).
C. de Ruiter, J. F. Bohle, G. J. de Jong, U. A. Th. Brinkman, and R. W. Frei, “Enhanced Fluorescence Detection of Dansyl Derivatives of phenolic compounds Using a Postcolumn Photochemical Reactor and Application to Chlorophenols in River Water,” Anal. Chem., 60, 666-670 (1988).
A. S. Sadaghiania and A. Khan, “Clouding of a nonionic surfactant: The effect of added surfactants on the cloud point,” J. Colloid Interface Sci., 144, 191-200 (1991).
M. Saeed, M. Depala, D. Craston, and I. Anderson, “Application of capillary electrochromatography (CEC) for the analysis of phenols in mainstream and sidestream tobacco smoke,” Chromatographia, 49, 391-398 (1999).
T. Saitoh and W. L. Hinze, “Concentration of Hydrophobic Organic Compounds and Extraction of Protein Using Alkylammoniosulfate Zwitterionic Surfactant Mediated Phase Separations (Cloud Point Extractions),” Anal. Chem., 63, 2520-2525. (1991).
T. Saitoh and W. L. Hinze, “Use of Surfactant-Mediated phase separation (Cloud point extraction) with affinity ligands for the extraction of hydrophilic Proteins,” Talanta, 42, 119-127 (1995).
T. Saitoh, H. Tani, T. Kamidate, and H. Watanabe, “Phase separation in aqueous micellar solutions of nonionic surfactants for protein separation,” Trends in Anal. Chem., 14, 213-217 (1995).
T. Saitoh, Y. Yoshida, T. Matsudo, S. Fujiwara, A. Dobashi, K. Iwaki, Y. Suzuki, and C. Matsubara, “Concentration of Hydrophobic Organic Compounds by Polymer- Mediated Extraction,” Anal. Chem., 71, 4506-4512 (1999).
C. M. Santana, Z. S. Ferrera, and J. J. Santana-Rodrguez, “Use of non-ionic surfactant solutions for the extraction and preconcentration of phenolic compounds in water prior to their HPLC-UV detection,” Analyst, 127, 1031-1037 (2002).
C. M. Santana, Z. S. Ferrera, and J. J. Santana-Rodrguez, “Use of polyoxyethylene-6- lauryl ether and microwave-assisted extraction for the determination of chlorophenol in marine sediments,” Anal. Chim. Acta, 524, 133-139 (2004).
F. J. Santos, O. Juregui, F. J. Pinto, and M. T. Galceran, “Experimental design approach for the optimization of supercritical fluid extraction of chlorophenols from polluted soils,” J. Chromatogr. A, 823, 249-258 (1998).
C. P. Sanz, R. Halko, Z. S. Ferrera, and J. J. Santana-Rodrguez, “Micellar extraction of organophosphorus pesticides and their determination by liquid chromatography,” Anal. Chim. Acta, 524, 265-270 (2004).
H. Schott, A. E. Royce, and S. K. Han, “Effect of Inorganic Additives on Solutions of Nonionic Surfactants,” J. Colloid Interface Sci., 98, 196-201 (1984).
D. A. Skoog and J. J. Leary, “Principles of Instrumental Analysis;” Saunders, New York (1992).
R. M. Smith, “Supercritical fluids in separation science–the dreams, the reality and the future,” J. Chromatogr. A, 856, 83-115 (1999).
J. L. Snyder, R. L. Grob, M. E. McNally, and T. S. Oostdykt, “Comparison of Supercritical Fluid Extraction with Classical Sonication and Soxhlet Extractions for Selected Pesticides,” Anal. Chem., 64, 1940-1946 (1992).
R. J. Stokes and D. F. Evans, “Fundermentals of Interfacial Engineering,” Wiley-VCH, New York (1997).
K. T. Valsaraj and L. J. Thibodeaux, “Relationships between micelle-water and octanol-water partition constants for hydrophobic organics of environmental interest,” Wat. Res., 23, 183-189 (1989).
A. Voelkel, J. Szymanowski, J. Beger, and K. Ebert, “Polarity of 1,3-bis[ω-butoxyoligo (oxyethylene)]propan-2-ols as measured by reversed-phase gas chromatography,” J. Chromarogr., 398, 31-41 (1987).
H. Watanabe and H. Tanaka, “A non-ionic surfactant as a new solvent for liquid-liquid extraction of zinc(II) with 1-(2-pyridylazo)-2-naphthol,” Talanta, 25, 585-589 (1978).
Z. Zhang and J. Pawliszyn, “Headspace Solid-Phase Microextraction,” Anal. Chem., 65, 1843-1852 (1993).