簡易檢索 / 詳目顯示

研究生: 林昱辰
Lin, Yu-Chen
論文名稱: 改善溫度效應的微懸臂樑架構之呼吸感測晶片設計
Design of a Temperature-Insensitive Micro Cantilever-Based Respiration Detection Chip
指導教授: 魏嘉玲
Wei, Chia-Ling
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 93
中文關鍵詞: 微機電系統呼吸感測懸臂樑
外文關鍵詞: respiration detection system, cantilever, MEMS
相關次數: 點閱:68下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了減少老年人及嬰幼兒因為呼吸終止而造成的死亡,本論文將微機電氣流感測器及訊號處理電路整合成一個呼吸感測系統晶片,實現一個可靠且功能良好的呼吸監測系統。感測器部分採用微懸臂樑架構,其會隨著溫度或壓力的改變而產生電阻值的改變,電路部分則包含放大及濾波的效果。本系統內建三組感測器,並對其溫度效應和感測器性能做比較,另外亦針對感測器、電路以及全系統的模擬和量測結果,分別作詳細說明,包含感測器的溫度效應以及偏壓效應等,並與模擬結果相對照,可用以修正模擬軟體的數據。全晶片大小為1.8x 2.4 mm2,系統總耗功為5.5mW,其中感測器架構消耗4.4mW,此外,全晶片採用TSMC 0.35 μm 2P4M CMOS 製程加上MEMS後製程製作。

    To lower the death rate of infants and elders due to respiration-related diseases, a respiration detection chip, which integrates both MEMS flow sensor and signal processing circuits into one single chip, has been implemented. A microcantilever is employed as the airflow sensor. The resistance of the microcantilever changes when the pressure applying on the cantilever or temperature changes. The changes in resistance is converted to voltage signals, which is then amplified and filtered by the signal processing circuits. Three MEMS sensors with slightly different designs are implemented in this chip, and their temperature sensitivities are compared. Both simulation and measurement results are presented in this thesis, including the temperature effect of the MEMS-sensors and the performance of the signal processing circuits. The accuracy of simulation tools can be greatly improved by calibrating the simulation results with the measured results, which means a lot for the future design. The full system dissipates 5.5mW, including 4.4mW dissipated in MEMS sensors. Besides, the chip was fabricated by using TSMC 0.35μm 2P4M mixed-signal process and MEMS post-process. The chip area is 1.8x 2.4 mm2.

    第一章 簡介 1 1.1 研究動機 1 1.2 論文架構 2 第二章 呼吸感測器設計與模擬 3 2.1 呼吸感測訊號來源 3 2.1.1 運動感測 3 2.1.2 血液含氧量感測 4 2.1.3 氣流感測 5 2.2 本論文採用之壓阻式呼吸感測器 10 2.2.1 微機電製程介紹 10 2.2.2 壓阻式感測器設計 12 2.3 壓阻式氣流感測器模擬分析 15 2.3.1 壓阻式氣流感測器壓力分析 15 2.3.2 壓阻式氣流感測器溫度分析 22 第三章 呼吸感測系統電路設計 25 3.1 系統介紹 25 3.2 第一級放大器 26 3.3 截波架構 30 3.3.1 截波架構介紹 30 3.3.2 截波架構之非理想效應 33 3.3.3 截波架構之時脈設計 36 3.4 緩衝電路與第二級放大器 39 3.4.1 緩衝電路 39 3.4.2 第二級放大器 42 3.5 低通濾波器 42 3.5.1 反膺波濾波器 43 3.5.2 切換式電容低通濾波器 44 第四章 呼吸感測系統電路模擬 47 4.1 第一級放大器 47 4.2 特殊時脈電路 49 4.3 緩衝電路 51 4.4 反膺波濾波器 54 4.5 切換式電容濾波器 54 4.6 系統規格 56 第五章 量測結果 60 5.1 電路功能 60 5.1.1 第一級差分差動放大器 60 5.1.2 截波架構用之特殊時脈電路 63 5.1.3 反膺波濾波器 64 5.1.4 交換式電容低通濾波器 66 5.1.5 訊號處理全系統 68 5.2 壓阻式電流感測器 69 5.2.1 感測器結構 69 5.2.2 感測器電阻溫度效應 77 5.2.3 感測器電阻偏壓效應 80 5.3 呼吸感測系統 82 5.3.1 感測器氣流感測系統 82 5.3.2 量測結果 86 第六章 結論與未來展望 88 6.1 總結 88 6.2 未來規劃 89 參考文獻 90

    [1] H. F. Krous, “Sudden Infant Death Syndrome and Unclassified Sudden Infant Deaths: A Definitional and Diagnostic Approach,” Current Pediatric Reviews, vol. 6, no. 1, pp. 5–12, Feb. 2010.
    [2] T. H. Liu, “Design of an infant respiration detection system on a single chip by use of a micro-cantilever flow sensor,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul. 2011.
    [3] P. Várady, S. Bongár, and Z. Benyó, “Detection of airway obstructions and sleep apnea by analyzing the phase relation of respiration movement signals,” IEEE Trans. Instrum. Meas., vol. 52, no. 1, pp. 2–6, Feb. 2003.
    [4] 楊家祥、陳俊傑(2006),「阻塞型睡眠呼吸中止症候群的診斷與治療」,基層醫學,第二十一卷第十一期,頁306-311。
    [5] 陶宏洋(2003),「第十四章呼吸系統監測」,重症醫學與護理,新北市:藝軒圖書出版社。
    [6] S. J. Tsai, “Application of MEMS type sensors in designing an evaluation system for obstructive sleep apnea,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul. 2010.
    [7] 臺大醫院醫學工程部,「生理監視器功能與參數量測原理簡介」,參考來源: http://www.ntuh.gov.tw/BMED/equipment/DocLib/生理監視器功能與參數量測原理簡介.aspx
    [8] J. G. Webster, “Measurements of the Respiratory System,” Medical Instrumentation : Application and Design. New York: Wiley, 1998, ch. 9.
    [9] D. Li, T. Li, and D. Zhang, “A monolithic piezoresistive pressure-flow sensor with integrated signal-conditioning circuit,” IEEE Sensor J., vol. 11, no. 9, pp. 2122–2128, Sep. 2011.
    [10] C. L. Dai and M. C. Liu, “Complementary metal–oxide–semiconductor microelectromechanical pressure sensor integrated with circuits on chip,” Jpn. J. Appl. Phys., vol. 46, no. 2, pp. 843–848, Feb. 2007.
    [11] P. Bruschi, M. Dei, and M. Piotto, “An Offset Compensation Method with Low Residual Drift for Integrated Thermal Flow Sensors,” IEEE Sensors J., vol. 11, no. 5, pp. 1162–1168, May. 2011.
    [12] S. Chaurasia and B.S. Chaurasia, “Design and simulation of low pressure piezoresistive MEMS sensor using analytical models,” in proc. 2012 Students Conf. on Engineering and Systems (SCES), 2012, pp. 1–5.
    [13] Y. H. Wang, C. Y. Lee, and C. M. Chiang, “A MEMS-based air flow sensor with a free-standing micro-cantilever structure,” Sensors, vol. 7, pp.2389–2401, Oct. 2007.
    [14] R. Y. Lin, “Design of a Respiration Detection Single Chip by Using Both Voltage- and Current-Mode MEMS Sensors,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul. 2012.
    [15] 蓋永鋒(2000),「微型壓阻式壓力感測器製作之研究」,國立成功大學工程科學系碩士論文。
    [16] S. D. Senturia, Microsystems Design, Boston, MA: Kluwer Academic, 2000.
    [17] N. Matsuzuka and T. Toriyama, “Analysis for piezoresistive property of heavily-doped polysilicon with upper and lower bounds,” J. Appl. Phys., vol. 108, pp. 1–11, Sep. 2010.
    [18] E. Sackinger and W. Guggenbuhl, “A versatile building block: The CMOS differential difference amplifier,” IEEE J. Solid-State Circuits, vol. 2, no. 2, pp. 287–294, Apr. 1987.
    [19] C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling,and chopper stabilization,” in Proc. IEEE,vol. 84, no. 11, Nov. 1996, pp. 1584–1614.
    [20] C. C. Enz, E. A. Vittoz, and F. Krummenacher, “A CMOS chopper amplifier,” IEEE J. Solid-State Circuits, vol. 22, pp. 335–341, June 1987.
    [21] D. J. Comer, D. T. Comer, B. K. Casper, and J. R.Gonzalez, “An integrable single-pole lowpass filter for low-frequency operation,” Int. J. Electron., vol. 83, no. 1, pp. 49–54, Nov. 1997.
    [22] A. Veeravalli, E. Sánchez-Sinencio, and J. Silva-Martínez, “Transconductance amplifier structures with very small transconductances: A comparative design approach,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp.700–775, Jun. 2002.
    [23] R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958–965, Jun. 2003.
    [24] W. M. C. Sansen, Analog Design Essentials. Dordrecht, Netherland: Springer, 2008.
    [25] W. Machowski, J. Jasielski, and S. Kuta, “Low Voltage Low Frequency Continuous Time CMOS Antialiasing Filters,” in proc. 14th Int. Conf. on Mixed Design of Integrated Circuits and Systems, 2007, pp. 641–644.
    [26] R. W. Johnstone and M. Parameswaran, “Curl and effective height of micromachined bi-layer cantilevers under differing residual stresses,” in Electrical and Computer Engineering, 2006, pp. 1617–1620.
    [27] G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nature Biotechnology, vol. 19, pp. 856–860, Sep. 2001.
    [28] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley & Sons, 1997.
    [29] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.

    無法下載圖示 校內:2018-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE