簡易檢索 / 詳目顯示

研究生: 廖明威
Liao, Ming-Wei
論文名稱: 奈米多孔性陽極氧化鋁成長行為與其應用
Growth behavior of nanoporous anodic aluminum oxide and its application
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 106
中文關鍵詞: 陽極氧化鋁複合脈衝陽極氧化鋁薄膜濺鍍殘留應力三維奈米結構光催化
外文關鍵詞: Anodic aluminum oxide, Hybrid pulse anodization, Al film, Sputter deposition, Residual stress, 3D nanostructure, Photocatalytic
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具高深寬比奈米孔特性的陽極氧化鋁(anodic aluminum oxide, AAO),可做為模板製備奈米線或其他一維奈米材料,並整合於電子或光電奈米製程中。一般AAO製備方法需於低溫下(0-5°C)使用直流電位進行兩階段陽極氧化,相對高的電解液溫度將導致溶解效應而影響其奈米孔洞結構。過去本實驗室發展之複合脈衝陽極氧化技術(hybrid pulse anodization, HPA)藉由搭配微小負電壓週期可於陽極氧化製程中抑制焦耳熱效應,達成常溫製備AAO的可能性。本論文將研究此技術於一階段陽極氧化鋁孔洞品質的改善,並進一步發展鋁薄膜的一階段陽極氧化製程,探討不同濺鍍條件對奈米孔洞成長行為的影響。
    在塊材鋁的製程研究中,將比較不同環境溫度下使用脈衝電位與直流電位於草酸溶液中進行一階段陽極氧化的差異。脈衝電位所製備的AAO孔洞尺寸均勻性與真圓度都較直流電位好,脈衝電位製程對環境溫度容忍度較高也有助於提升整體AAO成長速率與獲得較大孔洞。另一方面,在常溫下使用脈衝電位製程對低純度塊材鋁進行陽極氧化的結果則展示了半球彎曲表面的奈米孔洞成長,此部分將針對其成形過程與原因進行驗證探討。在鋁薄膜的陽極氧化製程研究中,首先將藉由不同靶材功率與基板偏壓製備鋁薄膜,探討所形成的不同表面形貌對後續成長AAO孔洞品質的影響。結果指出,於相對低靶材功率並添加基板偏壓可沉積較小平均晶粒尺寸且表面較平整的鋁薄膜,將有助於AAO孔洞尺寸均勻性的提升。基於此結果進一步改變靶材功率,可獲得於50 W形成的平坦表面形貌與185 W所形成的三維表面形貌,並使用脈衝陽極氧化製程成功製備出不同於傳統平面AAO的三維奈米孔洞結構。此外,研究成果也證實鋁薄膜中殘留應力將影響陽極氧化過程的孔洞成長。透過濺鍍製程所製備的不同殘留應力之鋁薄膜實驗發現,殘留張應力會抵消氧化鋁膨脹之壓應力而減少其AAO塑性變形行為,使得孔洞間距變小、孔洞密度增加。本論文最後應用過度蝕刻後的三維奈米孔洞結構沉積P25二氧化鈦材料,應用其高比表面積特性獲得其附著性之改善與整體光催化效能之提升。

    Anodic aluminum oxide (AAO) containing high-aspect ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional nanostructures. Conventional anodic aluminum oxide (AAO) templates were performed using two-step direct current anodization (DCA) at low temperature (0-5°C). A higher electrolyte temperature results in dissolution effects therefore damages the pore structure. This problem is resolved by means of a hybrid pulse anodization (HPA) technique, in which a period of small negative potential is applied to suppress the Joule heating effect during the AAO preparation process. In this dissertation, improvement of AAO quality in single-step anodization was developed by hybrid pulse technique. Moreover, the growth of nanoporous AAO in Al films deposited by various sputtering conditions has been further studied.
    In the anodization of bulk Al, the single-step HPA and DCA anodization in oxalic acid and the various environment temperature was investigated. The pore distribution uniformity and circularity of AAO by HPA is much better than DCA. HPA which can sustain higher environment temperature is helpful to increase the growth rate and enlarge the pore size of AAO films. On the other hand, the growth behavior of porous alumina on a hemisphere curved surface has been examined and discussed by an HPA process on low-purity bulk Al at room temperature. In the anodization of Al film, the various Al target power and substrate bias were performed to form different surface morphology of the sputtered Al thin films which were further investigated for the AAO synthesis quality. The Al films with smaller mean grain size and smoother morphology deposited at relatively low target power with bias were beneficial for more uniform pores size distribution. Accordingly, the various Al target powers of 50 to 185 W were performed to form different two-dimensional (2D) and three-dimensional (3D) surface morphologies. The 3D porous structure which is different from general 2D planar AAO has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. In addition, the role and effect of residual stress on pore generation of AAO have been investigated into anodizing the various-residual-stresses aluminium films. The tensile residual stress lessened the compressive oxide growth stress to reduce AAO plastic deformation leading to smaller pore distance and higher pore density. Finally, the enhancement of photocatalytic performance and improvement of adhesion of P25 TiO2 by AAO with over-etched 3D nanoporous structure was demonstrated.

    摘 要 I Abstract III 誌 謝 V List of Tables VIII List of Figures IX List of Acronyms XIII Chapter 1 Introduction 1 1-1 Background of the research 1 1-1-1 Nanoporous AAO template 2 1-1-2 Growth of AAO on Si substrate 3 1-2 Purpose of the research 4 Chapter 2 Literature Review 6 2-1 Anodization of Al film on substrate 6 2-1-1 AAO on Si substrate 7 2-1-2 Effects of Al film properties on anodization 8 2-1-3 3D nanoporous structure 9 2-2 Hybrid pulse anodization 10 Chapter 3 Experimental Methods 21 3.1 Al film and AAO preparation 21 3-1-1 Anodization of bulk Al 21 3-1-2 Anodization of Al film 22 3-1-3 Deposition of TiO2 powder on AAO 23 3.2 Inspection of Al films and AAO 23 3-2-1 Grazing incident X-ray diffractrometer (GIXRD) 23 3-2-2 Scan electron microscopy (SEM) 23 3-2-3 Atomic force microscopy (AFM) 24 3-2-4 Pore feature characterization 24 3-2-5 Photocatalyst characterization 25 Chapter 4 Hybrid pulse anodization of Bulk Al 28 4-1 Single-step hybrid pulse anodization 28 4-1-1 Effects of voltage mode (DCA vs. HPA) 29 4-1-2 Effects of temperature 34 4-2 Anodization of Al foil containing a hemi-sphere curved surface 40 4-2-1 Impurity induced hemi-sphere curved surface 40 4-2-2 Growth of nanopores in hemi-sphere curved surface 44 Chapter 5 Single-step anodization of Al film on Si wafer 49 5-1 Enhancement of pore size distribution in single-step hybrid pulse anodization 49 5-1-1 The microstructure and morphology of as-deposited Al films 50 5-1-2 The pores growth and distribution uniformity of AAO 54 5-2 Growth of porous anodized alumina on the sputtered aluminum films with 2D-3D morphology 59 5-2-1 Effect of target power on 2D-3D morphology transition 59 5-2-2 Growth of AAO on 3D Al film 66 5-3 The role and effect of residual stress on pore generation during anodization of aluminium thin films 69 5-3-1 The residual stress of as-deposited Al film 69 5-3-2 Growth of pore on Al film with residual stress 75 5-4 Enhancement of photocatalytic performance of TiO2 by porous alumina with three-dimensional structure 82 5-4-1 AAO for larger specific surface area 83 5-4-2 Photocatalytic performance of TiO2 P25 on over-etched 3D AAO 87 Chapter 6 Conclusions and Future Works 91 6-1 Conclusions 91 6-2 Future Work 93 References 95 Vita 104

    [1] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, "Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina," Journal of Applied Physics, vol. 84, pp. 6023-6026, 1998.
    [2] D. Crouse, Y. H. Lo, A. E. Miller, and M. Crouse, "Self-ordered pore structure of anodized aluminum on silicon and pattern transfer," Applied Physics Letters, vol. 76, pp. 49-51, 2000.
    [3] C. K. Chung, R. X. Zhou, T. Y. Liu, and W. T. Chang, "Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature," Nanotechnology, vol. 20, p. 055301, 2009.
    [4] J. W. Diggle, T. C. Downie, and C. W. Goulding, "Anodic oxide films on aluminum," Chemical Reviews, vol. 69, pp. 365-&, 1969.
    [5] A. Huczko, "Template-based synthesis of nanomaterials," Applied Physics a-Materials Science & Processing, vol. 70, pp. 365-376, 2000.
    [6] G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gosele, "Highly ordered monocrystalline silver nanowire arrays," Journal of Applied Physics, vol. 91, pp. 3243-3247, 2002.
    [7] J. Goldberger, R. R. He, Y. F. Zhang, S. W. Lee, H. Q. Yan, H. J. Choi, and P. D. Yang, "Single-crystal gallium nitride nanotubes," Nature, vol. 422, pp. 599-602, 2003.
    [8] Y. Piao, H. Lim, J. Y. Chang, W. Y. Lee, and H. Kim, "Nanostructured materials prepared by use of ordered porous alumina membranes," Electrochimica Acta, vol. 50, pp. 2997-3013, 2005.
    [9] T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, and U. Goesele, "Synthesis of vertical high-density epitaxial Si(100) nanowire arrays on a Si(100) substrate using an anodic aluminum oxide template," Advanced Materials, vol. 19, pp. 917-+, 2007.
    [10] H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science, vol. 268, pp. 1466-8, 1995.
    [11] S. Ono, M. Saito, and H. Asoh, "Self-ordering of anodic porous alumina induced by local current concentration: Burning," Electrochemical and Solid State Letters, vol. 7, pp. B21-B24, 2004.
    [12] W. Lee, R. Ji, U. Goesele, and K. Nielsch, "Fast fabrication of long-range ordered porous alumina membranes by hard anodization," Nature Materials, vol. 5, pp. 741-747, 2006.
    [13] J. P. O'Sullivan and G. C. Wood, "The morphology and mechanism of formation of porous anodic films on aluminum," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 317, pp. 511-543, 1970.
    [14] S. G. Yang, H. Zhu, D. L. Yu, Z. Q. Jin, S. L. Tang, and Y. W. Du, "Preparation and magnetic property of Fe nanowire array," Journal of Magnetism and Magnetic Materials, vol. 222, pp. 97-100, 2000.
    [15] X. Y. Wang, X. Y. Wang, W. G. Huang, P. J. Sebastian, and S. Gamboa, "Sol-gel template synthesis of highly ordered MnO2 nanowire arrays," Journal of Power Sources, vol. 140, pp. 211-215, 2005.
    [16] S. Rahman and H. Yang, "Nanopillar arrays of glassy carbon by anodic aluminum oxide nanoporous templates," Nano Letters, vol. 3, pp. 439-442, 2003.
    [17] A. Bai, C. Hu, Y. Yang, and C. Lin, "Pore diameter control of anodic aluminum oxide with ordered array of nanopores," Electrochimica Acta, vol. 53, pp. 2258-2264, 2008.
    [18] L. Zaraska, G. D. Sulka, J. Szeremeta, and M. Jaskula, "Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum," Electrochimica Acta, vol. 55, pp. 4377-4386, 2010.
    [19] A. L. Cai, H. Y. Zhang, H. Hua, and Z. B. Zhang, "Direct formation of self-assembled nanoporous aluminium oxide on SiO2 and Si substrates," Nanotechnology, vol. 13, pp. 627-630, 2002.
    [20] S. Inoue, S.-Z. Chu, K. Wada, D. Li, and H. Haneda, "New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum," Science and Technology of Advanced Materials, vol. 4, pp. 269-276, 2003.
    [21] W. H. Yu, G. T. Fei, X. M. Chen, F. H. Xue, and X. J. Xu, "Influence of defects on the ordering degree of nanopores made from anodic aluminum oxide," Physics Letters A, vol. 350, pp. 392-395, 2006.
    [22] A. F. Feil, M. V. da Costa, L. Amaral, S. R. Teixeira, P. Migowski, J. Dupont, G. Machado, and S. B. Peripolli, "The influence of aluminum grain size on alumina nanoporous structure," Journal of Applied Physics, vol. 107, p. 026103, 2010.
    [23] A. F. Feil, P. Migowski, J. Dupont, L. Amaral, and S. R. Teixeira, "Nanoporous Aluminum Oxide Thin Films on Si Substrate: Structural Changes as a Function of Interfacial Stress," Journal of Physical Chemistry C, vol. 115, pp. 7621-7627, 2011.
    [24] V. C. Nettikaden, A. Baron-Wiechec, P. Bailey, T. C. Q. Noakes, P. Skeldon, and G. E. Thompson, "Formation of barrier-type anodic films on sputtering-deposited Al-Ti alloys," Corrosion Science, vol. 52, pp. 3717-3724, 2010.
    [25] V. C. Nettikaden, H. Liu, P. Skeldon, and G. E. Thompson, "Porous anodic film formation on Al-Ti alloys in sulphuric acid," Corrosion Science, vol. 57, pp. 49-55, 2012.
    [26] M. T. Wu, I. C. Leu, and M. H. Hon, "Anodization behavior of Al film on Si substrate with different interlayers for preparing Si-based nanoporous alumina template," Journal of Materials Research, vol. 19, pp. 888-895, 2004.
    [27] M. S. Sander and L. S. Tan, "Nanoparticle arrays on surfaces fabricated using anodic alumina films as templates," Advanced Functional Materials, vol. 13, pp. 393-397, 2003.
    [28] M. J. Kim, J. H. Choi, J. B. Park, S. K. Kim, J. B. Yoo, and C. Y. Park, "Growth characteristics of carbon nanotubes via aluminum nanopore template on Si substrate using PECVD," Thin Solid Films, vol. 435, pp. 312-317, 2003.
    [29] N. V. Myung, J. Lim, J. P. Fleurial, M. Yun, W. West, and D. Choi, "Alumina nanotemplate fabrication on silicon substrate," Nanotechnology, vol. 15, pp. 833-838, 2004.
    [30] S. K. Hwang, J. Lee, S. H. Jeong, P. S. Lee, and K. H. Lee, "Fabrication of carbon nanotube emitters in an anodic aluminium oxide nanotemplate on a Si wafer by multi-step anodization," Nanotechnology, vol. 16, pp. 850-858, 2005.
    [31] G.-Y. Zhao, C.-L. Xu, D.-J. Guo, H. Li, and H.-L. Li, "Template preparation of Pt-Ru and Pt nanowire array electrodes on a Ti/Si substrate for methanol electro-oxidation," Journal of Power Sources, vol. 162, pp. 492-496, 2006.
    [32] T. Shimizu, M. Nagayanagi, T. Ishida, O. Sakata, T. Oku, H. Sakaue, T. Takahagi, and S. Shingubara, "Epitaxial growth of Cu nanodot arrays using an AAO template on a Si substrate," Electrochemical and Solid State Letters, vol. 9, pp. J13-J16, 2006.
    [33] M. Kokonou, A. G. Nassiopoulou, K. P. Giannakopoulos, A. Travlos, T. Stoica, and S. Kennou, "Growth and characterization of high density stoichiometric SiO2 dot arrays on Si through an anodic porous alumina template," Nanotechnology, vol. 17, pp. 2146-2151, 2006.
    [34] C.-J. Yang, S.-M. Wang, S.-W. Liang, Y.-H. Chang, C. Chen, and J.-M. Shieh, "Low-temperature growth of ZnO nanorods in anodic aluminum oxide on Si substrate by atomic layer deposition," Applied Physics Letters, vol. 90, p. 033104, 2007.
    [35] N. Tasaltin, S. Ozturk, N. Kilinc, H. Yuezer, and Z. Z. Ozturk, "Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions," Applied Physics a-Materials Science & Processing, vol. 95, pp. 781-787, 2009.
    [36] C.-H. Lai, C.-W. Chang, and T.-Y. Tseng, "Size-dependent field-emission characteristics of ZnO nanowires grown by porous anodic aluminum oxide templates assistance," Thin Solid Films, vol. 518, pp. 7283-7286, 2010.
    [37] X. Jin, Y. Hu, Y. Wang, R. Shen, Y. Ye, L. Wu, and S. Wang, "Template-based synthesis of Ni nanorods on silicon substrate," Applied Surface Science, vol. 258, pp. 2977-2981, 2012.
    [38] T. S. Kustandi, W. W. Loh, H. Gao, and H. Y. Low, "Wafer-Scale Near-Perfect Ordered Porous Alumina on Substrates by Step and Flash Imprint Lithography," Acs Nano, vol. 4, pp. 2561-2568, 2010.
    [39] A. S. M. Chong, L. K. Tan, J. Deng, and H. Gao, "Soft imprinting: Creating highly ordered porous anodic alumina templates on substrates for nanofabrication," Advanced Functional Materials, vol. 17, pp. 1629-1635, 2007.
    [40] H. Oshima, H. Kikuchi, H. Nakao, K.-i. Itoh, T. Kamimura, T. Morikawa, K. Matsumoto, T. Umada, H. Tamura, K. Nishio, and H. Masuda, "Detecting dynamic signals of ideally ordered nanohole patterned disk media fabricated using nanoimprint lithography," Applied Physics Letters, vol. 91, p. 022508, 2007.
    [41] D. C. Leitao, A. Apolinario, C. T. Sousa, J. Ventura, J. B. Sousa, M. Vazquez, and J. P. Araujo, "Nanoscale Topography: A Tool to Enhance Pore Order and Pore Size Distribution in Anodic Aluminum Oxide," Journal of Physical Chemistry C, vol. 115, pp. 8567-8572, 2011.
    [42] H. Asoh, M. Matsuo, M. Yoshihama, and S. Ono, "Transfer of nanoporous pattern of anodic porous alumina into Si substrate," Applied Physics Letters, vol. 83, pp. 4408-4410, 2003.
    [43] L. Pu, Y. Shi, J. M. Zhu, X. M. Bao, R. Zhang, and Y. D. Zheng, "Electrochemical lithography: fabrication of nanoscale Si tips by porous anodization of Al/Si wafer," Chemical Communications, pp. 942-943, 2004.
    [44] A. Oide, H. Asoh, and S. Ono, "Natural lithography of si surfaces using localized anodization and subsequent chemical etching," Electrochemical and Solid State Letters, vol. 8, pp. G172-G175, 2005.
    [45] H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, "Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks," Applied Physics Letters, vol. 88, p. 201116, 2006.
    [46] O. Rabin, P. R. Herz, Y. M. Lin, A. I. Akinwande, S. B. Cronin, and M. S. Dresselhaus, "Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass," Advanced Functional Materials, vol. 13, pp. 631-638, 2003.
    [47] J. S. Choi, G. Sauer, P. Goring, K. Nielsch, R. B. Wehrspohn, and U. Gosele, "Monodisperse metal nanowire arrays on Si by integration of template synthesis with silicon technology," Journal of Materials Chemistry, vol. 13, pp. 1100-1103, 2003.
    [48] Y. F. Mei, X. L. Wu, T. Qiu, X. F. Shao, G. G. Siu, and P. K. Chu, "Anodizing process of Al films on Si substrates for forming alumina templates with short-distance ordered 25 nm nanopores," Thin Solid Films, vol. 492, pp. 66-70, 2005.
    [49] P. Skeldon, G. E. Thompson, S. J. Garcia-Vergara, L. Iglesias-Rubianes, and C. E. Blanco-Pinzon, "A tracer study of porous anodic alumina," Electrochemical and Solid State Letters, vol. 9, pp. B47-B51, 2006.
    [50] S. J. Garcia-Vergara, P. Skeldon, G. E. Thompson, and H. Habazaki, "A flow model of porous anodic film growth on aluminium," Electrochimica Acta, vol. 52, pp. 681-687, 2006.
    [51] K. R. Hebert and J. E. Houser, "A Model for Coupled Electrical Migration and Stress-Driven Transport in Anodic Oxide Films," Journal of The Electrochemical Society, vol. 156, pp. C275-C281, 2009.
    [52] J. E. Houser and K. R. Hebert, "The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films," Nature Materials, vol. 8, pp. 415-420, 2009.
    [53] G. D. Sulka, S. Stroobants, V. V. Moshchalkov, G. Borghs, and J. P. Celis, "Effect of tensile stress on growth of self-organized nanostructures on anodized aluminum," Journal of The Electrochemical Society, vol. 151, pp. B260-B264, 2004.
    [54] R. Koch, "The intrinsic stress of polycrystalline and epitaxial thin metal-films," Journal of Physics-Condensed Matter, vol. 6, pp. 9519-9550, 1994.
    [55] S. J. Garcia-Vergara, P. Skeldon, G. E. Thompson, and H. Habazaki, "Stress generated porosity in anodic alumina formed in sulphuric acid electrolyte," Corrosion Science, vol. 49, pp. 3772-3782, 2007.
    [56] C. S. Toh, B. M. Kayes, E. J. Nemanick, and N. S. Lewis, "Fabrication of free-standing nanoscale alumina membranes with controllable pore aspect ratios," Nano Lett, vol. 4, pp. 767-770, 2004.
    [57] A. E. Lita and J. E. Sanchez, "Characterization of surface structure in sputtered Al films: Correlation to microstructure evolution," Journal of Applied Physics, vol. 85, pp. 876-882, 1999.
    [58] S.-J. Hwang, J.-H. Lee, C.-O. Jeong, and Y.-C. Joo, "Effect of film thickness and annealing temperature on hillock distributions in pure Al films," Scripta Materialia, vol. 56, pp. 17-20, 2007.
    [59] D. Kim, B. Heiland, W. D. Nix, E. Arzt, M. D. Deal, and J. D. Plummer, "Microstructure of thermal hillocks on blanket Al thin films," Thin Solid Films, vol. 371, pp. 278-282, 2000.
    [60] A. J. Yin, R. S. Guico, and J. Xu, "Fabrication of anodic aluminium oxide templates on curved surfaces," Nanotechnology, vol. 18, p. 035304, 2007.
    [61] W. Wang, D. Li, M. Tian, Y.-C. Lee, and R. Yang, "Wafer-scale fabrication of silicon nanowire arrays with controllable dimensions," Applied Surface Science, vol. 258, pp. 8649-8655, 2012.
    [62] D. A. Wang, L. B. Zhang, W. Lee, M. Knez, and L. F. Liu, "Novel Three-Dimensional Nanoporous Alumina as a Template for Hierarchical TiO2 Nanotube Arrays," Small, vol. 9, pp. 1025-1029, 2013.
    [63] I. Vrublevsky, V. Parkoun, J. Schreckenbach, and W. A. Goedel, "Dissolution behaviour of the barrier layer of porous oxide films on aluminum formed in phosphoric acid studied by a re-anodizing technique," Applied Surface Science, vol. 252, pp. 5100-5108, 2006.
    [64] A. Han and Y. Qiao, "Effects of nanopore size on properties of modified inner surfaces," Langmuir, vol. 23, pp. 11396-11398, 2007.
    [65] I. De Graeve, H. Terryn, and G. E. Thompson, "Influence of local heat development on film thickness for anodizing aluminum in sulfuric acid," Journal of the Electrochemical Society, vol. 150, pp. B158-B165, 2003.
    [66] H. Takahashi, M. Nagayama, and H. Alahori, "Electromicroscopy of porous anodic oxide films on Al by the acid of an ultramicrotome technique. Open-circuit dissolution behaviour of the film," Joint Session on Electron Microscopy (abstracts only received), pp. 77-77, 1973.
    [67] K. Yokoyama, H. Konno, H. Takahashi, and M. Nagayama, "Advantages of pulse anodizing," Plating and Surface Finishing, vol. 69, pp. 62-65, 1982.
    [68] K. Okubo, D. Toba, and Y. Sakura, Jpn. J. Metal Finishing Soc., vol. 39, pp. 512-516, 1988.
    [69] K. Okubo, S. Suyama, and Y. Sakura, Jpn. J. Surface Finishing Soc., vol. 40, pp. 1366-1371, 1989.
    [70] W. Lee, R. Scholz, and U. Gösele, "A Continuous Process for Structurally Well-Defined Al2O3Nanotubes Based on Pulse Anodization of Aluminum," Nano Letters, vol. 8, pp. 2155-2160, 2008.
    [71] W. Lee and J.-C. Kim, "Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization," Nanotechnology, vol. 21, p. 485304, 2010.
    [72] D. Losic and M. Lillo, "Porous Alumina with Shaped Pore Geometries and Complex Pore Architectures Fabricated by Cyclic Anodization," Small, vol. 5, pp. 1392-1397, 2009.
    [73] H. B. Michaelson, CRC Handbook of Chemistry and Physics, 73 ed., 1992.
    [74] U. Welzel, J. Ligot, P. Lamparter, A. C. Vermeulen, and E. J. Mittemeijer, "Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction," Journal of Applied Crystallography, vol. 38, pp. 1-29, 2005.
    [75] B. AXS, General Area Detector Diffraction System (GADDS) user's manual, 2005.
    [76] G. D. Sulka, A. Brzózka, L. Zaraska, and M. Jaskuła, "Through-hole membranes of nanoporous alumina formed by anodizing in oxalic acid and their applications in fabrication of nanowire arrays," Electrochimica Acta, vol. 55, pp. 4368-4376, 2010.
    [77] M. A. Kashi and A. Ramazani, "The effect of temperature and concentration on the self-organized pore formation in anodic alumina," Journal of Physics D: Applied Physics, vol. 38, pp. 2396-2399, 2005.
    [78] G. D. Sulka and W. J. Stępniowski, "Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures," Electrochimica Acta, vol. 54, pp. 3683-3691, 2009.
    [79] S. Wernick, R. Pinner, and P. G. Sheasby, The Surface Treatment and Finishing of Aluminum and its Alloys, 5 ed.: Finshing Publications, 1987.
    [80] A. O. Araoyinbo, M. N. A. Fauzi, S. Sreekantan, and A. Aziz, "One-Step Anodization of Aluminum at Room Temperature," Sains Malaysiana, vol. 38, pp. 521-524, 2009.
    [81] Y. Wen-bin and T. Xiao-hong, "One-step anodization preparation and photoluminescence property of anodic aluminum oxide with nanopore arrays," Materials Science Forum, vol. 663, pp. 272-5, 2010.
    [82] L. Zaraska, G. D. Sulka, and M. Jaskuła, "The effect of n-alcohols on porous anodic alumina formed by self-organized two-step anodizing of aluminum in phosphoric acid," Surface and Coatings Technology, vol. 204, pp. 1729-1737, 2010.
    [83] Z. Wu, C. Richter, and L. Menon, "A Study of Anodization Process during Pore Formation in Nanoporous Alumina Templates," Journal of The Electrochemical Society, vol. 154, p. E8, 2007.
    [84] H. W. Zhu, L. J. Ci, C. L. Xu, J. Liang, and D. H. Wu, "Growth mechanism of Y-junction carbon nanotubes," Diamond and Related Materials, vol. 11, pp. 1349-1352, 2002.
    [85] S. I. Shah and P. F. Carcia, "Superconductivity and resputtering effects in rf-sputtered YBa2Cu3O7-x thin-films," Applied Physics Letters, vol. 51, pp. 2146-2148, 1987.
    [86] Y. Choi and S. Suresh, "Size effects on the mechanical properties of thin polycrystalline metal films on substrates," Acta Materialia, vol. 50, pp. 1881-1893, 2002.
    [87] M. Pletea, R. Koch, H. Wendrock, R. Kaltofen, and O. G. Schmidt, "In situ stress evolution during and after sputter deposition of Al thin films," J Phys Condens Matter, vol. 21, p. 225008, 2009.
    [88] J. J. Hill, K. Haller, and K. J. Ziegler, "Direct Fabrication of High-Aspect Ratio Anodic Aluminum Oxide with Continuous Pores on Conductive Glass," Journal of The Electrochemical Society, vol. 158, pp. E1-E7, 2011.
    [89] J. Oh and C. V. Thompson, "The role of electric field in pore formation during aluminum anodization," Electrochimica Acta, vol. 56, pp. 4044-4051, 2011.
    [90] A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode," Nature, vol. 238, pp. 37-+, 1972.
    [91] B. Oregan and M. Gratzel, "A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, pp. 737-740, 1991.
    [92] O. Carp, C. L. Huisman, and A. Reller, "Photoinduced reactivity of titanium dioxide," Progress in Solid State Chemistry, vol. 32, pp. 33-177, 2004.
    [93] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, "Photocatalysis on Tio2 surfaces - principles, mechanisms, and selected results," Chemical Reviews, vol. 95, pp. 735-758, 1995.
    [94] N. G. Park, J. van de Lagemaat, and A. J. Frank, "Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells," Journal of Physical Chemistry B, vol. 104, pp. 8989-8994, 2000.
    [95] D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, "Titanium oxide nanotube arrays prepared by anodic oxidation," Journal of Materials Research, vol. 16, pp. 3331-3334, 2001.
    [96] D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, and M. C. Thurnauer, "Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR," Journal of Physical Chemistry B, vol. 107, pp. 4545-4549, 2003.
    [97] B. Ohtani, O. O. Prieto-Mahaney, D. Li, and R. Abe, "What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test," Journal of Photochemistry and Photobiology a-Chemistry, vol. 216, pp. 179-182, 2010.
    [98] S. R. Patil, B. H. Hameed, A. S. Skapin, and U. L. Stangar, "Alternate coating and porosity as dependent factors for the photocatalytic activity of sol-gel derived TiO2 films," Chemical Engineering Journal, vol. 174, pp. 190-198, 2011.
    [99] Y. Chen and D. D. Dionysiou, "A comparative study on physicochemical properties and photocatalytic behavior of macroporous TiO2-P25 composite films and macroporous TiO2 films coated on stainless steel substrate," Applied Catalysis a-General, vol. 317, pp. 129-137, 2007.
    [100] Y. Yu, J. C. Yu, J. G. Yu, Y. C. Kwok, Y. K. Che, J. C. Zhao, L. Ding, W. K. Ge, and P. K. Wong, "Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes," Applied Catalysis a-General, vol. 289, pp. 186-196, 2005.
    [101] P. Rodriguez, V. Meille, S. Pallier, and M. A. Al Sawah, "Deposition and characterisation of TiO2 coatings on various supports for structured (photo)catalytic reactors," Applied Catalysis a-General, vol. 360, pp. 154-162, 2009.
    [102] M. Vargova, G. Plesch, U. F. Vogt, M. Zahoran, M. Gorbar, and K. Jesenak, "TiO2 thick films supported on reticulated macroporous Al2O3 foams and their photoactivity in phenol mineralization," Applied Surface Science, vol. 257, pp. 4678-4684, 2011.
    [103] H. Imai, Y. Takei, K. Shimizu, M. Matsuda, and H. Hirashima, "Direct preparation of anatase TiO2 nanotubes in porous alumina membranes," Journal of Materials Chemistry, vol. 9, pp. 2971-2972, 1999.
    [104] Y. Lin, "Photocatalytic activity of TiO2 nanowire arrays," Materials Letters, vol. 62, pp. 1246-1248, 2008.

    下載圖示 校內:2024-08-15公開
    校外:2024-08-15公開
    QR CODE