| 研究生: |
洪上超 Hung, Shang-Chao |
|---|---|
| 論文名稱: |
氮化鎵一維奈米結構製作與光機電特性研究 Fabrications and Characterizations of One Dimensional Gallium Nitride Nanostructures |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 氮化鎵 、奈米結構 |
| 外文關鍵詞: | Nanostructure, GaN |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此研究中,我們成功的研製出奈米柱和奈米管,並非用催化劑成長,而是用電漿偶合(ICP)蝕刻的方式,且沒有使用微影技術。我們使用原子力顯微鏡和掃描表面電子顯微鏡加以確認,這些六角柱的奈米結構是在C軸上垂直於氮化鎵材料的基板上。而奈米柱的尺寸及密度和蝕刻的參數有很強的相關性,似乎隱含了這些一維奈米結構的形成和氮化鎵薄膜磊晶成長時形成的錯位密度無關。除此之外,在某些特定的蝕刻製程參數,我們發現外直徑是80nm、內直徑是40nm的奈米管,而它的密度為4.4x109/cm2,在此實驗中也運用了穿透式電子顯微鏡來觀察奈米管,發現可以製作出良好直壁式的奈米管垂直陣列。就我們所知這是第一次發現以蝕刻方式形成奈米管的結構,且製程具有再現性。
之後我們用導電探針原子力顯微鏡研究這些高密度及相對低密度奈米柱及奈米管試片的導電電流特性。發現這些一維奈米結構的氮化鎵在蝕刻的表面上有較強且穩定的導電電流,此一結果似乎也進一層暗示這些奈米柱和錯位密度的關聯性並不強。若再和氮化鎵的原始磊晶片比較導電特性,發現這些一維奈米結構的氮化鎵電阻值比原始磊晶片的氮化鎵電阻值小了大約兩個數量級。我們預期此結果將有助於奈米元件製作時的電性應用參數。
其次我們用計算和實驗的方式來檢測單根氮化鎵奈米管的力學強度特性,實驗是用壓縮力的方式,並引用了線性彈性殼層受力的理論。我們也探討了多種受力後可能的形變行為並用理論計算加以分析。除此之外,用長度500nm和長度300nm的奈米管做研究,也發現了彈性殼層不穩定性現象的存在。除此之外也將此單跟奈米管產生永久形變所需的能量加以計算,約為10-5 Erg。此結果將可預期有助於奈米元件封裝及製作時,了解元件的力學強度之參考。
最後我們選擇不同形狀,最小的直徑約50nm的一維結構,如島狀、柱狀、管狀和角狀,來做光學的檢測。發現這些一維奈米結構在蝕刻後的表面破壞會造成許多表面能態的產生,並觀察到施體受體對產生的現象,尤其是奈米管的結構更是在黃光螢光區(YL)有明顯增強的反應。由以上的一維奈米結構製程與其光機電特性研究結果顯示,其特性結果可應用到奈米壓印領域並預測產生永久形變之能量,除此之外也預期應用在電泳法檢測的領域裡面。
In this study, both of the GaN nanocolumns (nanorods) and hollow nanocolumns (nanotubes) were formed successfully by inductively coupled plasma (ICP) etching without lithography technique. It was found that the tops of these nanostructures were hexagonal with the c-axis perpendicular to substrate surface confirmed by atomic force microscope (AFM) and scanning electron microscope (SEM). The density of the GaN nanocolumns depends strongly on etching parameters that suggests that the formation of these GaN nanostructures was not related to the dislocation density in the original GaN epitaxial layers. With an Ar concentration of 42.86%, it was found that diameter of the whole nanocolumns was around 80 nm, the diameter of the nanocavities inside these nanocolumns was around 40 nm while the density of the nanocolumns was around 4.4x109 cm-2. To our knowledge, this is the first report regarding this kind of nanostructure.
These one dimensional nanostructures were investigate by using C-AFM. The results measured from both the high-density and relative low-density etched nanorods and nanotubes samples show enhanced current conduction at the edges of nanorods. This indicates that the off-axis planes situated at such locations are more electrically active than c-plane GaN. Again, the increased current conduction on the edges of GaN nanorods in different dimensions and density are most likely not associated with dislocations. The local current mapping of these nanorods samples show the maximum current value of 20 nA, corresponding to an effective tip–sample resistance of ~107 Ω, indicating that the value of measured currents on these nanorods samples were more than two orders of magnitude larger than that obtained in the as-grown film sample.
Calculating analysis and experimental observations of shell buckling in individual gallium nitride nanotube were taken by using nanoindentation. By using the experimental results of critical buckling strain under compression, the stiffness of nanotubes that were vertically aligned on a template were investigated by using linear elastic shell buckling theory. In addition, more studies of various possible nanomechanical behavior modes of gallium nitride nanotubes by shall model are provided. Experimental observations of uniaxial compression shell instabilities in the GaN nanotubes has also been reported. With both of these experimentally obtained values of critical buckling strain around 7.4 %-19.0 %, the experimentally obtained values of Young’s modulus for length of 500 nm and 300 nm are 483.9 GPa and 223.4 GPa, respectively. Furthermore, the buckling energy for the GaN nanotube of 500 nm and 300 nm in length was 2.43x10-5 Erg and 1.28x10-5 Erg, respectively.
Finally, the optical investigation of nanoscale structures of ICP-etched GaN islands, tips, tubes and cones as small as 50 nm in diameter were performed. Based on GaN near-band-edge luminescence analyses, substantial number of donor-related defects believably was introduced to the nanotubes sample as compared to the nanotips and nanocones samples. Photoluminescence mapping illustrated that defects induced by the ICP process predominantly situate near the facet’s surface of the nanostructures. The nanoislands formation as result of more optical absorption and etching introduced less number of defects. In particular, the nanotubes sample exhibits a conspicuous increased in yellow luminescence intensity compared to the other nanostructure samples.
The results of this study should be applicable in nanostamping and predictable in the buckling energy. They may open a new application possibility in one dimensional GaN nanostructures in electrophoresis detecting.
References
[1] J. I. Pankove, S. Bloom and G. Harbeke,” Optical properties of GaN,” RCA Rev., 36 (1975) pp.163-167.
[2] J. I. Pankove, MRS Symp. “Perspective on gallium nitride,” Proc., 162 (1990) 515
[3] P. Das and D.K. Ferry, “Hot electron microwave conductivity of wide band gap semiconductors”, Solid State Electron. 19 (1976) pp.76-80
[4] S. Nakamura, M, Senoh and T. Mukai, “Candela-class high-brightness
InGaN/AlGaN double-heterostructure blue-light-emitting diode”, Appl. Phys.
Lett. 64 (1994) pp.1687-1689.
[5] H. Morkoc and S. N. “High Luminosity Blue and Blue Green Gallium Nitride Light Emitting Diodes”, Mohammad, Science 267 (1995) pp.51-53.
[6] S. Nakamura, ”The Roles of Structural Imperfections in InGaN-Based Blue
Light-Emitting Diodes and Laser Diodes”.Science 281 (1998) pp.956-959.
[7] Z. G . BaI, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, G. C. Xiong and S. Q. Feng, “NanoscaleGeO2 wires synthesized by physical evaporation”, Chem. Phys. Lett. 303 (1999) pp.311-314.
[8] C. R. Martin, “Template Synthesis of Electronically Conductive Polymer Nanostructures,” Acc. Chem. Res. 28 (1995) pp.61-65.
[9] J. C. Hulteen and C. R. Martin, “A general template-based method for the preparation of nanomaterials”, J. Chem. Mater. 7 (1997) pp.1075-1079.
[10] J. T. Hu, T. W. Odom and C. M. Lieber, “Chemistry and physics in. one dimension: Synthesis and properties of nanowires and nanotubes”, Accounts Chem. Res. 32 (1999) pp.435-438.
[11] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith and C. M. Lieber, “Semiconductor nanowire heterostructures”, Nature 415 ( 2001) pp.617-620.
[12] X. F. Duan, Y. Huang, Y.Cui, J. F. Wang and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices”, Nature 409 (2001) pp.66-70.
[13] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292 (2001) pp.1897-1901.
[14] J. C. Johnson, H. Q. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally and P. D. Yang, “Single Nanowire Lasers,” J. Phys. Chem. B. 105 (2001) pp.11387-11391.
[15] Y. Li, G. W. Meng, L. D. Zhang and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties,” Appl. Phys. Lett. 76(2000) pp.2011-2013.
[16] Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang and S. X. Wang, “Preparation and photoluminescence of highly ordered TiO2 nanowire arrays,” Appl. Phys. Lett. 78 (2001) pp.1125-1127.
[17] M. Zhang, E. Ciocan, Y. Bando, K. Wada, L. L. Chang and P. Pirouz, ”Bright visible photoluminescence from silica nanotube flakes prepared by the sol–gel template method,” Appl. Phys. Lett. 80 (2002) pp.491-493.
[18] J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng and Y. W. Wang, “Fabrication and Photoluminescence of Ordered GaN Nanowire Arrays”, J. Chem. Phys. 115 (2001) pp.5714-5718.
[19] G. S. Cheng, S. H. Chen, X. G. Zhu, Y. Q. Mao and L. D. Zhang, “Highly ordered nanostructures of single crystalline GaN nanowires in anodic alumina membranes,” Mater. Sci. Eng. A- Struct. Mater. Prop. Microstruct. Process. 286 (2000) pp.165-170.
[20] G. S. Cheng, L. D. Zhang, S. H. Chen, Y. Li, L. Li, X. G. Zhu, Y. Zhu, G. T. Fei and Y. Q. Mao, “Ordered nanostructure of single-crystalline GaN nanowires in a honeycomb structure of anodic alumina,” J. Mater. Res. 15 (2000) pp.347-350.
[21] G. S. Cheng, L. D. Zhang, Y. Li, G. T. Fei, L. Li, C. M. Mo and Y. Q. Mao, “Large-scale synthesis of single crystalline gallium nitride nanowires,” Appl. Phys. Lett. 75(1999) pp.2455-2458.
[22] Y. Y. Wu, H. Q. Yan and P. D. Yang, “Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics,” Top. Catal. 19 (2002) pp.97-100.
[23] W.Q. Han, S. S. Fan, Q.Q. Li, Y.D. Hu, “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube–Confined Reaction”, Science 277 (1997) pp.1287-1991
[24] S.Nakamura, “The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes”, Science 281 (1998) 956.
[25] X.L.Chen, J. Y. Li. Y. G. Cao, Y. C. Lan, H. Li, C. Y. Wang, Z. Zhang and Z. Y. Qiao, “Straight and Smooth GaN Nanowires,” Adv. Mater. 12 (2000) pp.1432-1435.
[26] C. C. Chen and C.C.Yeh, “Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires”, Adv.Mater. 12 (2000) pp.738-741.
[27] H. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee, S. T. Lee, “Bulk-quantity GaN nanowires synthesized from hot filament CVD”, Chem. Phy. Letters 327 (2000) pp.263-266.
[28] G. S. Cheng, L. D. Zhang, Y. Zhu, “Large-Scale synthesis of single crystslline gallium nitride nanowires”, Appl. Phys. Lett. 75 (1999) pp.2455-2457.
[29] X. F. Duan and C. M. Lieber, “Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires”, J. Am. Chem. Soc. 122 (2000) pp.188-191.
[30] X. L. Chen, R. M. Wang, J. Xu and D. P. Yu, “High-Quality Ultra-Fine GaN Nanowires Synthesized Via Chemical Vapor Deposition”, Advanced Materials 15 (2003) pp.419-423.
[31] F. L. Deepak, A Govindaraj and C. N. R. Rao, “Single crystal GaN nanowires”, J Nanosci & Nanotechno. 1 (2001) 303.
[32] J. Y. Li, X. L.Chen, Z. Y.Qiano, Y. G.Cao and H. Li, “Synthesis of GaN nanowires”, J. Mater. Sci.Lett. 20 (2001) pp.1987-1990.
[33] M. W. Lee, H. Z. Twu, C. C. Chen and C. H.Chen, “Optical characterization of wurtzite gallium nitride nanowires”, Appl. Phys. Lett. 79 (2001) pp.3693-3695.
[34] Zhang, X. S. Peng, X. F. Wang, Y.W.Wang and L. D. Zhang, “MicroRaman inivestigation of GaN nanowires prepared by direct reaction Ga with NH3”, Chem. Phys.Lett. 345 (2001) pp.372-375.
[35] W. S.Shi, Y. F. Zheng, Wang N, C. S. Lee and S. T .Lee, “Microstructures of gallium nitride nanowires synthesized by oxideassisted method”, Chem. Phys. Lett. 345 (2001) pp.377-380.
[36] C. C. Chen, C. C. Yeh, C. H. Liang, C. C. Lee, C. H. Chen, M. Y. Yu, H. L. Liu, L. C. Chen, Y. S. Lin, K. J. Man and K. H. Chen, “Preparation and characterization of carbon nanotubes encapsulated GaN nanowires”, J. Phys. Chem. Solids 62 (2001) pp.1577-1581.
[37] M. Q. He. P. Z. Zhou, S. N. Mohammad, G. L. Harris, J. B. Halpern, R. Jacobs, W. L. Sarney and L. Salamanca-Riba, “Growth of GaN nanowires by direct reaction of Ga with NH3”, J. Cryst. Crowth 231 (2001) pp.357-360.
[38] Z. J. Li, X. L. Chen, H. J. Li, Q. Y. Tu, Z. Yang, Y. P. Xu and B. Q. Hu, “Synthesis and Raman scattering of GaN nanorings, anoribbons and nanowires”, Appl. Phys. A-Mater. 72 (2001) pp.629-633.
[39] K. W. Chang and J. J. Wu, “Low-temperature catalytic synthesis gallium nitride nanowires”, J. Phys. Chem. B 106 (2002) pp.7796-7800.
[40] H. M. Kim and Y. S.Park, “Growth of GaN nanorods by a hydride vapor phase epitaxy method”, Adv. Mater. 14 (2002) pp.991-994.
[41] H. Y. Peng, N. Wang and X. T. Zhou, “Control of growth orientation of GaN nanowires”, Chem. Phys. Lett. 359 (2002) pp.241-244.
[42] H. W. Seo, S. Y. Bae and Park J, “Strained gallium nitride nanowires”, J. Chem.Phys. 11 (2002) pp.9492-9496.
[43] J. R. Kim, H. M. So and J. W. Park, “Electrical transport properties of individual gallium nitride nanowires synthesized by chemical–vapor- deposition,” Appl. Phys. Lett. 80 (2002) pp.3548-3550.
[44] H. Li, J. Y. Li, M. He, “Fabrication of bamboo-shaped GaN nanorods,” Appl. Phys. A-Mate.r 74 (2002) pp.561-565.
[45] L. X. Zhao, G. W. Meng, X. S. Peng, X. S. Peng, X. Y. Zhang and L. D. Zhang, “Large-scale synthesis of GaN nanorods and their photoluminescence,” Appl. Phys. A-Mater. 74 (2002) pp.587-590.
[46] L. X. Zhao, G. W. Meng, X. S. Peng, X. S. Peng, X. Y. Zhang and L. D. Zhang, “Synthesis, Raman scat-tering and infrared spectra of large-scale GaN nanorods,” J. Cryst. Growth 235 (2002) 124.
[47] J. Goldberger, R. R. He, Y. F. Zhang, S. Lee, H. Q. Yan, Heon-Jin choi and P. Yang, “Single-crystal gallium nitride nanotubes”, Natuer 422 (2003) pp.599-602.
[48] D. Routkevitch, T. Bigioni, M. Moskovits and J. M. Xu, “Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates,” J. Phys. Chem. 100 (1996) pp.14037-14041.
[49] D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui and Y. Tang, “Preparation of CdS Single Crystal Nanowires by Electrochemically Induced Deposition,” Adv. Mater. 12 (2000) pp.520-523.
[50] D. Routkevitch, T. L. Haslett, L. Ryan, T. Bigioni, C. Douketis and M. Moskovits, “Synthesis and resonance Raman spectroscopy of CdS nano-wire arrays,” Chem.Phys. 210 (1996) pp.343-347.
[51] J. L. Hutchison, D. Routkevitch, M. Moskovits and R. R. Nayak, Inst. Phys. “The effect of surface relaxation and ion thinning on delta-doped semiconductor cross-sections,” Conf. Ser. 157 (1997) pp.389-392.
[52] J. S. Suh and J. S. Lee, “Surface enhanced Raman scattering for CdS nanowires deposited in anodic aluminum oxide nanotemplate,” Chem. Phys. Lett. 281 (1997) pp.384-388.
[53] M. H. Huang, S. Mao, H. Feich, H. Q. Y an, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science 292 (2001) pp.1897-1900.
[54] D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong and S. Q. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73 (1998) pp.3076-3078.
[55] B. Gates, Y. Y. Wu, Y. D. Yin, P. D. Yang and Y. N. Xia, “Single-Crystalline Nanowires of Ag2Se Can Be Synthesized by Templating against Nanowires of Trigonal Se,” J. Am. Chem. Soc. 123 (2001) pp.11500-11505.
[56] M. Zhang, Y. Bando and K. Wada, “Sol-gel template preparation of TiO2 nanotubes and nanorods,” J. Mater. Sci. 2 (2001) pp.167-171.
[57] H. Nakamura and Y. Matsui, “Silica Gel Nanotubes Obtained by the Sol-Gel Method,” J. Am. Chem. Soc. 117 (1995) pp.2651-2655.
[58] N. C. Li and C. R. Martin, “A high-rate, high-capacity, nanostructured Sn-based anode prepared using sol-gel template synthesis,” J. Electrochem. Soc. 148 (2001) pp.A164-167.
[59] H. Q. Cao, Y. Xu, J. M. Hong, H. B. Liu, G. Yin, B. L. Li, C.Y. Tie and Z. Xu, “Sol-Gel Template Synthesis of an Array of Single Crystal CdS Nanowires on a Porous Alumina Template ,” Adv. Mater. 13 (2001) pp.1393-1396.
[60] Y. K. Zhou, C. M. Shen and L. H. Li, “Synthesis of high-ordered LiCoO2 nanowire arrays by AAO template ,” Solid State Ion. 146 (2002) pp.81-85.
[61] M. Zhang, Y. Bando and K. Wada, “Synthesis of coaxial nanotubes: Titanium oxide sheathed with silicon oxide,” J. Mater. Res. 16 (2001) pp.1408-1412.
[62] G. S. Cheng, S. H. Chen, X. G. Zhu, Y. Q. Mao and L. D. Zhang, Mater. Sci. Eng. A-Struct. Mater. “Highly ordered nanostructures of single crystalline GaN nanowires in anodic alumina membranes,” Prop. Microstruct. Process. 286 (2000) pp.165-169.
[63] G. S. Cheng, L. D. Zhang, S. H. C hen, Y. Li, L. Li, X. G. Zhu, Y. Zhu, G. T. Fei and Y. Q. Mao, “Ordered nanostructure of single-crystalline GaN nanowires in a honeycomb structure of anodic alumina,” J. Mater. Res. 15 (2000) pp.347-350.
[64] G. S. Cheng, L. D. Zhang, Y. Zhu, G. T. Fei, L. Li, C. Mo and Y. Q. Mao, “Large-scale synthesis of single crystalline gallium nitride nanowires,” Appl. Phys. Lett. 75 (1999) pp.2455-2458.
[65] C. C. Williams, R. C. Davis, P. Neuzil, “Micromachined probes for nanometer scale measurements and methods of making such probes,” U.S. patent 5,969,345, (1999).
[66] F. G. Tarntair, L. C. Chen, S. L. Wei, W. K. Hong, K. H. Chen, H. C. Cheng, “ High current density field emission from arrays of carbon nanotubes and diamond-clad Si tips,” J. Vac. Sci. Technol. B 18 (2000) pp.1207-1211.
[67] P. D. Kichambare, F. G. Tarntair, L. C. Chen, K. H. Chen, H. C. Cheng, “Enhancement in field emission of silicon microtips by bias-assisted carburization,” J. Vac. Sci. Technol. B 18 (2000) pp.2722-2727.
[68] D. M. Tennant, In Nanotechnology; Timp, G., Ed.; Springer-Verlag: New York, (1999) ch 4.
[69] H. Yoshida, T. Urushido, H. Miyake and K. Hiramatsu, “Formation of GaN Self-Organized Nanotips by Reactive Ion Etching,” Jpn. J. Appl. Phys. 40 (2001) pp.L1301-1305
[70] C. C. Yu, C. F. Chu, J. Y. Tsai, H. W. Huang, T. H. Hsueh, C. F. Lin and S. C. Wang, “Gallium Nitride Nanorods Fabricated by Inductively Coupled Plasma Reactive Ion Etching,” Jpn. J. Appl. Phys. 41 (2002) pp.L910-914.
[71] D.K. FERRY, and S. M. GOODNICK “Transport in Nanostructures”, (Cambridge University Press 1997, 1999) Ch 3.
[72] D. W. Jenkins and J. D. Dow, "Electronic structures and doping of InN, InxGa1-xN, and InxAl1-xN", Phys. Rev. B 39 (1989) pp.3317-3329
[73] J. Neugebauer and C. G. Van de Walle, "Atomic geometry and electronic structure of native defects in GaN", Phys. Rev. B 50 (1994) pp.8067-8070
[74] P. Boguslawski, E.L. Briggs and J. Bernholc, "Native defects in gallium nitride", Phys. Rev. B 51 (1995) pp.17255-17258
[75] P. Perlin, T. Suski, H. Teisseyre, "Towards the Identification of the Dominant Donor in GaN", Phys. Rev. Lett. 75 (1995) P.P.296~299
[76] G. Ertl, R. Gomer and D.L. Mills, “Semiconductor Surfaces and Interfaces” 2nd
Edition (Springer-Verlag Berlin Heidelberg 1995) Ch3, Ch5, pp.43-44, 68-71.
[77] W. A. Harrison, Phys. Rev. B 8 (1973) pp.4487-4491.
[78] J. M. Gere, and S. P. Timoshenko, Mechanics of Materials, 2nd Edition (Wadsworth, Inc.,Belmont, California 1984) Ch7,Ch11,pp.354,556,.
[79] V. M. Harik, T.S. Gates, M.P. Nemeth, “Applicability of the Continum-Shell Theories to the Mechanics of Nanotubes” NASA1-97046, NASA Langley Research Center, Hampton, VA, 23681-2199 (2001).
[80] S. P. Timoshenko, and J. M. Gere, Theory of Elastic Stability, McGraw-Hill, New York, (1961).
[81] A. W. LEISSA, Vibration of Shells, NASA Special Publication - 288, NASA Press, Washington, D. C., (1973).
[82] T. HALICIOGLU, “Stress Calculations for Carbon Nanotubes,” Thin Solid Films, 312 (1998), pp.11-14.
[83] V. M. Harik, Ranges of Applicability for the Continuum-beam Model in the Constitutive Analysis of Carbon Nanotubes: Nanotubes or Nano-beams, NASA/CR-2001-211013, NASA Langley Research Center, Hampton, VA, (2001).
[84] V. M. Harik, Ranges of Applicability for the Continuum-beam Model in the Mechanics of Carbon Nanotubes and Nanorods, Solid State Communications, 120 (2001), pp.331-335.
[85] A. K. Noor, M. S. Anderson, and W. H. Green, “Continuum Models for Beam- and Plate-like Lattice Structures,” AIAA Journal, 16 (12) (1978) pp.1219-1228.
[86] A. K. Noor, and M. P. Nemeth, “Micropolar Beam Models for Lattice Grids with Rigid Joints,” Comp.Meth. Appl. Mech. Engng., 21 (1980) pp. 249-263.
[87] B. I. Yakobson, C. J. Brabec,, and J. Bernholc, “Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response,” Physical Review Letters, 76 (1996) pp.2511-2514.
[88] C. V. Nguyen, K.J. Chao, R. M. D. Stevens, L. Delzeit, A. Cassell, J. Han, and M. Meyyappan,” Carbon Nanotube Tip Probes: Stability and Lateral Resolution in Scanning Probe Microscopy and Application to Surface Science in Semiconductors,” Nanotechnology, 12 (2001) pp.363-367.
[89] P. J. F. Harris, Carbon Nanotubes and Related Structures, Cambridge University Press, (1999) ch5, ch7.
[90] G. Odegard, T. S. Gates, L. Ncholson, and K. E. Wise, “Equivalent Continuum Modeling of Nano-structured Materials,” NASA TM-2001-210863, NASA Langley Research Center, Hampton, VA, 2001.
[91] J. H.Starnes, M. W. Jr. Hilburger, and M. P. Nemeth, “The Effects of Initial Imperfections on the Buckling of Composite Cylindrical Shells”, Composite Structures: Theory and Practice, ASTM STP 1383, P. Grant and C. Q. Rousseau, Eds., American Society for Testing and Materials, West Conshohocken, PA, 2000, pp.529-550.
[92] J.I. Pankove, “Optical process in semiconductors” Dover Publication Inc., New york, (1995) ch5.
[93] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface Studies by Scanning
Tunneling Microscopy,” Phys. Rev. Lett. 49 (1982) pp.57-60.
[94] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “7 × 7 Reconstruction of Si (111) Resolved in Real Space,” Phys. Rev. Lett. 50 (1983) pp.120-123.
[95] G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56 (1986) pp.930-933.
[96] D. Sadrid, “Scanning Force Microscopy.”Oxford Press, Oxford publishing company (1990) ch3.
[97] Dawn A. Bonnell, “Scanning Probe Microscopy and Spectroscopy”, Wiley-VCH, (2001) pp.16-20.
[98] Y. Martin, C.C. Williams and H. K. Wickramadinghe,” Atomic force microscope– force mapping and profiling on a sub 100-Å scale,” J. Appl. Phys. 61 (1987) pp.4723-4729.
[99] F. J. Giessibl, Ch. Gerber, and G. Binnig,” A low-temperature atomic force/scanning tunneling microscope for ultrahigh vacuum,” J. Vac. Sci. Technol. B 9 (1991) pp.984-989.
[100] P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M.
Bezanilla, M. Fritz, D. Vie, and H. G. Hansma,” Tapping mode atomic force
microscopy in liquids,” Appl. Phys. Lett. 64 (1994) pp.1738-1740.
[101] R. E. Thomson and J. Moreland, “Development of highly conductive cantilevers for atomic force microscopy point contact measurements,” J. Vac. Sci. Technol. B 13 (3) (1995) pp.1123-1127.
[102] A. Bietsch, M. A. Schneider, M. E. Welland, and B. Michel, “ Electrical testing of gold nanostructures by conducting atomic force microscopy,” J. Vac. Sci. Technol. B 18 (3), (2000) pp.1160-1165.
[103] J.N. Hung, “Plasma Reactor”, Journal of Chenistry Egineering, 8 (1995) pp.455-461.
[104] Hong Xiao, translated by J.J. Lo & D.C. Chang, Introduction to Semi-Conductor Process, Eurasia, (2000) ch3.
[105] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quan. Electron. 8 (2002) pp.278-281.
[106] S. J. Chang, C. H. Chen, P. C. Chang, Y. K. Su, P. C. Chen, Y. D. Jhou, H. Hung, C. M. Wang and B. R. Huang, “Nitride-based LEDs with p-InGaN capping layer,” IEEE Tran. Electron. Dev. 50 (2003) pp.2567-2571
[107] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi and J. M. Tsai, “GaN metal-semiconductor-metal photodetectors with low-temperature-GaN cap layers and ITO metal contacts,” IEEE Electron. Dev. Lett. 24 (2003) pp.212-215.
[108] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J.
F. Chen and J. M. Tsai, “GaN metal-semiconductor- metal photodetectors with
low- temperature-GaN cap layers and ITO metal contacts,” IEEE J. Sel. Top.
Quan. Electron. 8 (2002) pp.744-747.
[109] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin, and J. C. Ke, “Highly reliable nitride-based LEDs with SPS plus ITO upper contacts,” IEEE Journal of Quantum Electronics,” IEEE Journal of Quantum Electronics 39 (2003) pp.1439-1444.
[110] C. C. Yu, C. F. Chu, J. Y. Tsai, H. W. Huang, T. H. Hsueh, C. F. Lin and S. C. Wang, “Gallium Nitride Nanorods Fabricated by Inductively Coupled Plasma Reactive Ion Etching,” Jpn. J. Appl. Phys. 41 (2002) pp.L910-920.
[111] R. J. Shul, C. G. Willison, M, M, Bridges, J. Han, J. W. Lee, S. J. Pearton, C. R. Abernathy, J. D. Mackenzie and S. M. Donovan, ”High-density plasma etch selectivity for the III–V nitrides,” Solid State Electron. 42 (1998) pp.2269-2274.
[112] S. J. Pearton, J. C. Zolper, R. J. Shul and F. Ren, “GaN: Processing, defects, and devices,” J. Appl. Phys. 86 (1999) pp.1-8.
[113] H. Yoshida, T. Urushido, H. Miyake and K. Hiramatsu, “Formation of GaN Self-Organized Nanotips by Reactive Ion Etching,” Jpn. J. Appl. Phys. 40 (2001) pp.L 1301-1305.
[114] E. Calleja, M. A. Sánchez-García, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, K. Ploog, J. Sánchez, J. M. Calleja, K. Saarinen, and P. Hautojärvi, “Molecular beam epitaxy growth and doping of III-nitrides on Si (1 1 1): layer morphology and doping efficiency,” Mater. Sci. Eng., B 82 (2001) pp.2-8.
[115] S.C. Hung, Y.K. Su, S.J. Chang, S.C. Chen, T.H. Fang, L. W. Ji, “GaN nanocolumns formed by inductively coupled plasmas etching,” Physica E 28 (2005) pp.115-121.
[116] J. Hu, Y. Bando, D. Golberg, and Q. Liu,“Gallium Nitride Nanotubes by the Conversion of Gallium Oxide Nanotubes, ” Angew. Chem. Int. Ed. 42 (2003) pp.3493-3499.
[117] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi and P. Yang, “ Single-crystal gallium nitride nanotubes,” Nature 422 (2003) pp.599-602.
[118] S. C. Hung, Y. K. Su, S. J. Chang, S. C. Chen, L.W. Ji, T. H. Fang, L. W. Tu, M. Chen, “Self-formation of GaN hollow nanocolumns by inductively coupled plasma etching,” Appl. Phys. A 80 (2005) pp.1607-1610.
[119] J. W. P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. G. Chu, A. M. Sergent, R. N. Kleiman, L. N. Pfeiffer, and R. J. Molnar,“ Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes,” Appl. Phys. Lett. 78, (2001) pp.1685-1688.
[120] M. E. Levinshtein, S. L. Rumyantsev, R. Gaska, J. W. Wang, and M. S. Shur, “AlGaN/GaN high electron mobility field effect transistors with low 1/f noise,” Appl. Phys. Lett. 73 (1998) pp.1089-1092.
[121] P. Yang, Y. Wu and R. Fan, “Inorganic semiconductor nanowires,” Inter. J. Nano. 1 (2002) pp.1-6.
[122] Y. Wu, H. Yan and P.Yang, “Inorganic semiconductor nanowires: rational growth, assemblies and novel properties,”Chemistry, Euro. J. 8 (2002) pp.1260-1265.
[123] P.Yang, R. Fan and Y. Wu, “Controlled growth of ZnO nanowires and their optical properties’’, Adv. Func. Mater. 12 (2002) pp.323-327.
[124] E. W. Wang, P.E. Sheehan and C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes ,” Science 277 (1997) pp.1971-1974.
[125] J. D. Holmes, K. P. Johnston, R.C. Doty and B. A. Korgel, “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires ,”Science 287 (2000) pp.1471-1474.
[126] L. D. Hicks and M. S. Dreselhaus, “Thermoelectric Figure of Merit of a One- Dimensional Conductor,” Phys. Rev. B47 (1996) pp.16631-16639.
[127] M. Huang, S. Mao, H. Feick, H. Yan , Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang,” Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292 (2001) pp.1897-1899.
[128] C. Q. Ru,“Degraded axial buckling strain of multiwalled carbon nanotubes due to interlayer slips,” J. Appl. Phys. 89 (2001) pp.3426-3432.
[129] S. R. Jian, T. H. Fang, and D. S. Chuu, “Analysis of Physical properties of III-nitride thin films by nanoindentation,” J. Elec. Mate. 32 (2003) pp.6-12.
[130] L. W. Ji, Y. K. Su, S. J. Chang, L. W. Wu, T. H. Fang, J. F. Chen, T. Y. Tsai, Q. K. Xue and S. C. Chen, “Growth of nanoscale InGaN self-assembled quantum dots,” Journal of Crystal Growth 249 (2003) pp.144-147.
[131] S.C. Hung, Y.K. Su, S.J. Chang, S.C. Chen, T.H. Fang, L. W. Ji, “GaN nanocolumns formed by inductively coupled plasmas etching,” Physica E 28 (2005) pp.115-120.
[132] L. W. Ji, Y. K. Su, S. J. Chang, T. H. Fang, T. C. Wen, and S. C. Hung, “Growth of ultra small self-assembled InGaN nanotips,” Journal of Crystal Growth 263 (2004) pp.63-66.
[133] Y.R. Jeng, P.C. Tsai, and T. H. Fang, “Molecular dynamics investigation of the mechanical properties of gallium nitride nanotubes under tension and fatigue,” Nanotechnology 15 (2004) pp.1737-1745.
[134] S. Iijima, “Helical microtubules of graphitic carbon,” Nature (London) 354 (1991) pp.56-59.
[135] M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, “Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties,” Phys. Rev. Lett. 84 (2000) pp.5552-5556.
[136] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load ,” Science 287 (2000) pp.637-640.
[137] E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science 277 (1997) pp.1971-1974.
[138] J. P. Salvetat, A. J. Kulik, J. M. Bonard, G. A. D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, F. Beguin, N. A. Burnham, and L. Forro, “Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes,” Adv. Mater. (Weinheim, Ger.) 11 (1999) pp.161-164.
[139] S. Iijima, C. Brabec, A. Maiti, and J. Bernholc,“ Structural flexibility of carbon nanotubes,” J. Chem. Phys. 104 (1996) pp.2089-2095.
[140] M. Falvo, G. Clary, R. Taylor, V. Chi, F. Brooks, S. Washburn, and R. Superfine, “Bending and buckling of carbon nanotubes under large strain,” Nature (London) 389 (1997) pp.582-584.
[141] P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, “Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes,” Science 283 (1999) pp.1513-1515.
[142] T. Fukuda, F. Arai, and L. Dong, “Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations ,” Proc. IEEE 91 (2003) 1803.
[143] S. C. Hung, Y. K. Su, S. J. Chang, S. C. Chen, L.W. Ji, T. H. Fang, L. W. Tu, M. Chen,” Self-formation of GaN hollow nanocolumns by inductively coupled plasma etching ,” Appl. Phys. A 80 (2005) pp.1607-1681.
[144] J. M. Gere, and S. P. Timoshenko, Mechanics of Materials, 2nd Edition (Wadsworth, Inc.,Belmont, California 1984) ch3.
[145] B. I. Yakobson, C. J. Brabec, and J. Bernholc, “Plasma fluidized bed imaging and possible strong coupling effects,” Phys. Rev. Lett. 76 (1996) pp.2511-2516.
[146] R. Narayanan, Shell Structures Stability and Strength (Elsevier Applied Science Publishers, London and New York, 1985) ch1.
[147] S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability (McGraw-Hill, New York, 1961) ch2, ch7,ch11.
[148] E. Calleja, M. A. Sánchez-García, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, K. Ploog, J. Sánchez, J. M. Calleja, K. Saarinen, and P. Hautojärvi, “Molecular beam epitaxy growth and doping of III-nitrides on Si (1 1 1): layer morphology and doping efficiency,” Mater. Sci. Eng. B 82 (2001) pp.2-7.
[149] S.C. Hung, Y.K. Su, S.J. Chang, S.C. Chen, T.H. Fang, L. W. Ji, “GaN nanocolumns formed by inductively coupled plasmas etching ,”Physica E 28 (2005) pp.115-121.
[150] S. C. Hung, Y.K. Su, T.H. Fang, S.J. Chang, L.W. Ji, “Buckling instabilities in GaN nanotubes under uniaxial compression ,”Nanotechnology 16 (2005) 2203.
[151] J. C. Zolper and R. J. Shul,” Blue-green light-emitting diodes and violet laser diodes,” MRS Bull. 22 (1997) pp.36-41.
[152] E. Hu, C.-H. Chen, and D. L. Green, “ Low-energy ion damage in semiconductors: A progress report,” J. Vac. Sci. Technol. B 14 (1996) pp.3632-3637 .
[153] M. Rahman, “Channeling and diffusion in dry-etch damage,” J. Appl. Phys. 82 (1997) pp.2215-2222.
[154] W. V. Schoenfeld, C.H. Chen, P. M. Petroff, and E. L. Hu, “Argon ion damage in self-assembled quantum dots structures,” Appl. Phys. Lett. 73 (1998) pp.2935-2937.
[155] O. J. Glembocki, J. A. Tuchman, J. A. Dagata, K. K. Ko, S. W. Pang, and C. E. Stutz, “Electronic properties of GaAs surfaces etched in an electron cyclotron resonance source and chemically passivated using P2S5,” Appl. Phys. Lett. 73 (1998) pp.114-116.
[156] S. J. Pearton, J. W. Lee, J. D. MacKenzie, C. R. Abernathy, and R. J. Shul, “Dry etch damage in InN, InGaN, and InAlN,” Appl. Phys. Lett. 67 (1995) pp.2329-2331.
[157] S. C. Hung, Y. K. Su, S. J. Chang, S. C. Chen, L.W. Ji, T. H. Fang, L. W. Tu, M. Chen, “Self-formation of GaN hollow nanocolumns by inductively coupled plasma etching ,”Appl. Phys. A 80 (2005) pp.1607-1612.
[158] G. Yu, G. Wang, H. Ishikawa, H. Umeno, M. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70 (1997) pp.3209-3211.
[159] S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III–nitrides: Growth, characterization, and properties,” J. Appl. Phys. 87 (2000) pp.965-972.
[160] W. Go¨tz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler, “Activation energies of Si donors in GaN,” Appl. Phys. Lett. 68 (1996) pp.3144-3146.
[161] J. J. Song and W. Shan, in Group III Nitride Semiconductor Compounds, edited by B. Gil Clarendon, Oxford, 1998 pp.182–241.
[162] S. Strite and H. Morkoc¸, “GaN, AlN, and InN: A review,” J. Vac. Sci. Technol. B 10 (1992) pp.1237-1243.
[163] R. Cheung, S. Withanage, R. J. Reeves, S. A. Brown, I. Ben-Yaacov, C. Kirchner, and M. Kamp, “Reactive ion etch-induced effects on the near-band-edge luminescence in GaN,” Appl. Phys. Lett. 74 (1999) pp.3185-3187.
[164] S. A. Brown, R. J. Reeves, C. S. Haase, R. Cheung, C. Kirchner, and M. Kamp, “Reactive-ion-etched gallium nitride: Metastable defects and yellow luminescence,”Appl. Phys. Lett. 75 (1999) pp.3285-3288.
[165] R. Cheung, R. J. Reeves, S. A. Brown, E. van der Drift, and M. Kamp, “Effects of dry processing on the optical properties of GaN ,”J. Appl. Phys. 88 (2000) pp.7110-7116.
[166] R. Cheung, R. J. Reeves, B. Rong, S. A. Brown, E. J. M. Fakkeldij, E. van der Drift, and M. Kamp, “Studies of Field Emission from Bias-Grown Diamond Thin Films,” J. Vac. Sci. Technol. B 17 (1999) pp.2659-2665.
[167] P. Perlin et al.,“ Towards the Identification of the Dominant Donor in GaN,” Phys. Rev. Lett. 75 (1995) pp.296-300.
[168] W. Grieshaber, E. F. Schubert, I. D. Goepfert, R. F. Karlicek, Jr., M. J. Schueman, and C. Tran, “ Competition between band gap and yellow luminescence in GaN and its relevance for optoelectronic devices,”J. Appl. Phys. 80 (1996) pp.4615-4623.
[169] E. F. Schubert, I. D. Goepfert, and J. M. Redwing, “Evidence of compensating centers as origin of yellow luminescence in GaN ,” Appl. Phys. Lett. 71 (1997) pp.3224-3327.
[170] T. Ogino and M. Aoki, “Mechanism of Yellow Luminescence in GaN,” Jpn. J. Appl. Phys., 19 (1980) pp.2395-2400.
[171] H. M. Chen, Y. F. Chen, M. C. Lee, and M. S. Feng, “Yellow luminescence in n-type GaN epitaxial films,” Phys. Rev. B 56 (1997) pp.6942-6945.
[172] J. Neugebauer and C. Van de Walle, “Evidence of compensating centers as origin of yellow luminescence in GaN,” Appl. Phys. Lett. 69 (1996) 503.
[173] T. Suski, “ Mechanism of yellow luminescence in GaN,” Appl. Phys. Lett. 67 (1995) pp.2188-2190.
[174] E.A. Dobisz, C.R.K Marrian, L.M.Shirey, and M.Ancona.” Thin silicon nitride films for reduction of linewidth and proximity effects in e-beam lithography,” J. Vac.Sci. Technol. B10 (1992) pp.3067-3072.
[175] A.Moel, M. L. Schattenburg, J.M Caster, and H.I. Smith, “A compact, low-cost system for sub-100 nm x-ray lithography,”J. Vac. Sci. Technol. B8 (1990) pp.1648-1653.
[176] L. Tsau, D. Wang, and K.L Wang,” Nanometer scale patterning of silicon (100) surfaces by an atomic force microscope operating in air,” Appl. Phys.Lett. 64 (1994) pp.2133-2135.
[177] D.Wang, L. Tsau, and K.L Wang, “Intensity-dependent energy and line shape variation of donor–acceptor-pair bands in ZnSe: N at different compensation levels,” Appl. Phys. Lett. 67 (1995) pp.1914-1916.
[178] A. Kumar and G. M. Whitesides, “All-solid-state subpicosecond passively mode locked erbium-doped fiber laser,” Appl. Phys. Lett. 63 (1993) pp.4-6.
[179] Y. Xia, E. Kim, and G.M. Whitesides,” Microcontact Printing of Alkanethiols on Silver and Its Application in Microfabrication,” J. Electrochem. Soc. 143 (1996) pp.1070-1075.
[180] Y. Xia, M. Mrksich .E Kim, and G. M.Whitesudes, “Microcontact Printing of Alkanethiols on Copper and Its application in Microfabrication,” Chen. Mater. 8 (1996) pp.601-604.
[181] Y. Xia, M. Mrksich. E.Kim, and G. M. Whutesides.” Microcontact Printing of Octadecylsiloxane on the Surface of Silicon Dioxide and Its Application in Microfabrication,” J.Am. Chem. Soc. 117 (1995) 9576.
[182] P.M St. John and H.G Craighead, Appl.Phys. Lett. 68 (1996) pp.7-9.
[183] E.Kim. A. Kumar, and G. M. Whitwsides,” Micromachined ultrasonic transducers: 11.4 MHz transmission in air and more,” J. Electrochem. Soc. 142 (1995) pp.628-634.