| 研究生: |
吳俊慶 Wu, Chun-ching |
|---|---|
| 論文名稱: |
應用於生醫方面具微流道的CMOS MEMS晶片之製程與封裝 Fabrication and Package of Microfluidic Devices Using CMOS MEMS Process for Biomedical Applications |
| 指導教授: |
張凌昇
Jang, Ling-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 電極在PDMS上之應用 、生醫晶片 、CMOS MEMS封裝 |
| 外文關鍵詞: | PDMS package, CMOS MEMS |
| 相關次數: | 點閱:69 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於CMOS技術的進步,許多研究將CMOS的技術引用到生物科技方面來做為應用。與普通的MEMS製程比較起來,CMOS的融入增加了更多可以運用的空間,如電路設計、微陣列等等。於是,CMOS MEMS 成為一個極度富有潛力的研究方向。我們將CMOS MEMS 應用在生醫科技方面,融合了MEMS的結構,以及外部的儀器做成一組細胞量測系統。並且以此系統捕捉單一細胞。
這個研究成果另外包含了此CMOS MEMS晶片的封裝。利用這種封裝的技術可以大幅減低CMOS MEMS在封裝上面的成本。並且提供一個新的方向在PDMS的應用上。我們可以在PDMS上做電極,也可以直接利用PDMS作為封裝。使PDMS的應用層次可以更廣、更多元化!
Coming with the improvement of CMOS (complementary metal-oxide-semiconductor) technology, many researchers imply CMOS fabrication into biology field. Enhanced circuits in bioMEMS (Biological micro-electro-mechanical systems) IC (Integrated circuit) create a new research field on biology and have inconceivable potential in biosensors which can be adopted to measure multiple parameters in colonies of living cells in real time. This project proposes a design of a CMOS-based impedance sensor with MEMS structures to conduct the single cell capture and impedance measurement.
This work proposes a PDMS (Polydimethylsiloxane) packages to CMOS MEMS IC design on post-MEMS encapsulation packaging process, which provides a low cost manufacturing process with the surfaces of high elastic solutions. The packaging method uses chip-to-PDMS bonding of micromachined PDMS substrates with a construction electrode, bonding of oxygen plasma, sealing pipe. The PDMS substrates are micromachined micro-channel and interconnection structures patterned on them with gold electrode and fluidic feedthroughs. The results indicate that these fabrication techniques may be useful as low cost alternatives to conventional approaches to bonding in microfludic channels of IC for micro-fluidic MEMS and biomedical applications.
[1] S. Lakard, G. Herlem, N. Valles-Villareal, G. Michel, A. Propper, T. Gharbi, B. Fahys, “Culture of neural cells on polymers coated surfaces for biosensor applications”, Biosensors and Bioelectronics, Vol. 20, Iss. 10, 15 April 2005, Pages 1946-1954.
[2] Jeffrey L. Hendricks, Jennifer A. Chikar, Mark A. Crumling, Yehoash Raphael, David C. Martin, “Localized cell and drug delivery for auditory prostheses”, Hearing Research, In Press, Uncorrected Proof, Available online 7 June 2008.
[3] Thomas Schnelle, Torsten Müller, Rolf Hagedorn, Andreas Voigt, Günter Fuhr, “Single micro electrode dielectrophoretic tweezers for manipulation of suspended cells and particles”, Biochimica et Biophysica Acta (BBA) - General Subjects, Vol. 1428, Iss. 1, 28 June 1999, Pages 99-105.
[4] Adam Rosenthal and Joel Voldman, “Dielectrophoretic Traps for Single-Particle Patterning”, Biophysical Journal, Vol. 88, March 2005, Pages 2193–2205.
[5] Brian M. Taff and Joel Voldman, “A Scalable Addressable Positive-Dielectrophoretic Cell-Sorting Array”, Analytical Chemistry, Vol. 77, 2005, Pages 7976-7983.
[6] Ki-Ho Hana, Arum Hanb, A. Bruno Frazier, ”Microsystems for isolation and electrophysiological analysis of breast cancer cells from blood” Biosensors and Bioelectronics, Vol. 21, 2006, Pages 1907–1914.
[7] Yuichi Wakamoto, Senkei Umehara, Kazunori Matsumura, Ippei Inoue, Kenji Yasuda, “Development of non-destructive, non-contact single-cell based differential cell assay using on-chip microcultivation and optical tweezers.” Sensors and Actuators B, Vol. 96, 2003, Pages 693–700.
[8] Ozkan, M., Wang, M. M., Ozkan, C., Flynn, R. A., and Esener, S, “Optical manipulation of objects and biological cells in microfluidic devices.” Biomedical Microdevices, Vol. 5, 2003, Pages 47–54.
[9] C.T. Lim, M. Dao, S. Suresh, C.H. Sow, K.T. Chew, “Large deformation of living cells using laser traps.” Acta Materialia, Vol. 52, 2004, Pages 1837–1845.
[10] Ling-Sheng Jang and Min-How Wang, “Microfluidic device for cell capture and impedance measurement”, Biomed Microdevices, Vol. 9, No. 5, 2007, Pages 734-742.
[11] Martin Jenkner, Marco Tartagni, Andreas Hierlemann, and Roland Thewes, “Cell-Based CMOS Sensor and Actuator Arrays”, IEEE Journal of Solid-state Circuits, Vol. 39, No. 12, December 2004, Pages 2431-2437.
[12] Baltes, H. Brand, O. Hierlemann, A. Lange, D. Hagleitner, C., “ CMOS MEMS-present and future”, The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, 2002, Pages 459-466.
[13] Dong-Hui Gao, Ming Qin, Hai-Yang Chen, Qing-An Huang, “A Self-packaged Thermal Flow Sensor by CMOS MEMS Technology”, Proceedings of IEEE Sensors, Vol. 2, 2004, Pages 879- 883.
[14] Henry Baltes, Oliver Brand and Marc Waelti, “Packaging of CMOS MEMS”, Microelectronics Reliability, Vol. 40, 2000, Pages 1255-1262.
[15] Reynolds, Osborne, "An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels", Philosophical Transactions of the Royal Society, Vol. 35, 1883, Pages 935-982.
[16] Mark A Eddings, Michael A Johnson and Bruce K Gale, “Determining the optical PDMS-PDMS bonding technique for microfluidic devices”, Journal of Micromechanics and Microengineering, Vol. 18, 2008, DOI: 10.1088/0960-1317/18/6/067001.
[17] Chih-Ming Chen and Huie-Chuan Lin, “Interfacial Reactions and Mechanical Properties of Ball-Grid-Array Solder Joints Using Cu-Cored Solder Balls”, Journal of Electronic Materials, Vol.35, No. 11, 2006, Pages 0361-5235.
[18] F. Heer, S. Hafizovic, W. Franks, T. Ugniwenko, A. Blau, C. Ziegler, A. Hierlemann, “CMOS microelectrode array for bidirectional interaction with neuronal networks”, Proceedings of ESSCIRC, Grenoble, France, 2005, Pages 335-338.
[19] Ste´phanie Pe´richon Lacoura, Sigurd Wagner, Zhenyu Huang and Z. Suo, “Stretchable gold conductors on elastomeric substrates”, Applied Physics Letter 15,Vol. 82, 14 April 2003, Pages 2404-2406.