簡易檢索 / 詳目顯示

研究生: 劉靜宜
Liu, Ching-Yi
論文名稱: 探討癌化過程中細胞的硬度變化
Study of Cell Stiffness during Cancer Progression
指導教授: 湯銘哲
Tang, Ming-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 59
中文關鍵詞: 乳癌細胞癌化過程原子力顯微鏡軟硬度上皮-間質轉化
外文關鍵詞: breast cancer cell, cancer progression, AFM, stiffness, EMT
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在腫瘤形成的過程中,癌化的組織通常都會比正常的組織來得硬,而這很有可能是由於細胞外基質的沉積所造成的。由一些致癌基因活化之後所致使的細胞轉型過程中,細胞骨架actin細絲結構被打亂及焦點附著蛋白形成的數目下降都是常見的現象。而這種改變跟細胞的懸浮性生長及細胞的癌化過程非常的相關。因此我們假設,經過這樣轉變的癌細胞應該會跟正常細胞有不一樣的生物物理性質。在本篇論文中,我們使用了正常的乳腺上皮細胞(M10)以及三株乳癌細胞株(MCF7,MDA-MB 468,MDA-MB 231) 來進行初步的研究。我們進行了細胞移動能力試驗,侵犯性能力以及固著非依賴性的測試,發現相對於較不惡性的MCF7細胞而言,具有侵犯性的MDA-MB 231細胞的移動能力是最高的。在固著非依賴性的試驗中,我們發現只有癌細胞具有這種可以在非附著的情況下有聚落形成的能力。為了要更進一步的探討這些細胞的生物物理性質,我們使用了原子力顯微鏡(AFM)來進行細胞軟硬度的量測。結果發現,正常的乳腺上皮細胞M10相對於其他的癌細胞有著較高的硬度。然而,在這些癌化的細胞中,最惡性的MDA-MB 231相對於較沒有侵犯能力的MCF7細胞卻有著較高的硬度。也就是說,隨著癌細胞的惡性程度上升,其細胞硬度也會隨之增加。這個現象也可以在肺腺癌細胞CL1系列的細胞中被發現。這個系統中的癌細胞相較於原始分離出來的CL1-0母細胞,較具有侵犯能力的CL1-1及CL1-5細胞都具有著較高的細胞硬度。更重要的是,若是將這些乳癌細胞培養在不同軟硬度的polyacrylamide gel上,則可以發現正常的M10細胞只有些許改變細胞硬度的能力,而non-malignant MCF7的細胞硬度則是不會因為外界環境的硬度改變而改變。最惡性的MDA-MB 231細胞則是會隨著外界基材硬度的下降而降低它們的細胞硬度。分析蛋白質表現的結果顯示,MCF7的β1-integrin and FAK表現很低,而MDA-MB 231則增加了EMT相關蛋白質(如β1-integrin, FAK, vimentin, fibronectin) 的表現。我們推測,MCF7對基質軟硬的不反應也許是因為失去了mechansensory machinery,而MDA-MB 231則是因為癌化的進程EMT而使得它能像fibroblast cells 可以因基質軟硬度的不同而調控細胞的軟硬度。綜合以上,這篇論文的研究方向可以對癌細胞在癌化過程中的物理性質變化,提供更多的了解。

    During cancer progression, the tumor tissues become stiffer than normal ones due to deposition of extra cellular matrix (ECM). Disruption of actin filaments and a decrease in focal adhesions are common features following transformation of cells by various oncogenes. Such changes are highly related to both anchorage-independent growth and cellular tumorigenicity. In this study, we hypothesized that cancer cells may exhibit different biophysical properties from normal cells. To test this hypothesis, we performed normal mammary epithelial cell line M10 and three breast cancer cell lines, including MCF7, MDA-MB 468, and MDA-MB 231. We first examined the metastatic potential of these cell lines by migration assay, invasion assay and anchorage-independent assay. The MDA-MB 231 showed the highest migration ability as well as invasiveness compared to the less malignant MCF7 cell lines. In anchorage-independent assay, only cancer cell lines formed colonies while the M10 cell did not. To further evaluate the biophysical properties of these cell lines, we employed atomic force microscopy (AFM) to measure cell stiffness. The data revealed that normal mammary cell line M10 was stiffer than all other cancer cell lines. Among these breast cancer cell lines, MDA-MB 231 showed highest cell stiffness. Similar results were also observed in the CL1 lung adenocarcinoma cell lines where highly invasive CL1-1 and CL1-5 cells exhibited higher cell stiffness compared to the original CL1-0 cells. To further investigate whether these cell lines respond to the external environmental changes, cells were cultured on type I collagen coated polyacrylamide gel with different stiffness. M10 cells exhibited low ability to modulate their cell stiffness on different substrates, whereas MDA-MB 231 cells gradually reduced their cell stiffness on the softer substratum. However, MCF7 did not change their stiffness. By western blot analysis, MCF 7 expressed lowest levels of β1 integrin and FAK and MDA-MB 231 expressed those of EMT related protein, such as β1 integrin, FAK, vimentin, and fibronectin. These data suggested that MCF7 lose its response to substratum stiffness might be due to lack of mechanosensory machinery and malignant MDA-MB 231 behaved like fibroblast to modulate their stiffness on different substratum stiffness probably due to the result of EMT.
    Taken together, these studies along this line might unravel how cancer cells alter their physical property during cancer progression.

    中文摘要 .............................................................................................................I Abstract ............................................................................................................III 誌謝 ................................................................................................................. V Content ............................................................................................................ VII Figure Content ....................................................................................................VIII Introduction ......................................................................................................... 1 Materials and Methods ................................................................................................ 9 Results ............................................................................................................. 16 Discussion .......................................................................................................... 25 References .......................................................................................................... 33 Figures 作者簡歷

    Alcantara, E.N., and Speckmann, E.W. (1976). Diet, nutrition, and cancer. Am J Clin Nutr 29, 1035-1047.
    Alexander, N.R., Branch, K.M., Parekh, A., Clark, E.S., Iwueke, I.C., Guelcher, S.A., and Weaver, A.M. (2008). Extracellular matrix rigidity promotes invadopodia activity. Curr Biol 18, 1295-1299.
    Aneja, R., Vangapandu, S.N., Lopus, M., Viswesarappa, V.G., Dhiman, N., Verma, A., Chandra, R., Panda, D., and Joshi, H.C. (2006). Synthesis of microtubule-interfering halogenated noscapine analogs that perturb mitosis in cancer cells followed by cell death. Biochem Pharmacol 72, 415-426.
    Bishop, A.L., and Hall, A. (2000). Rho GTPases and their effector proteins. Biochem J 348 Pt 2, 241-255.
    Butcher, D.T., Alliston, T., and Weaver, V.M. (2009). A tense situation: forcing tumour progression. Nat Rev Cancer 9, 108-122.
    Button, E., Shapland, C., and Lawson, D. (1995). Actin, its associated proteins and metastasis. Cell Motil Cytoskeleton 30, 247-251.
    Caille, N., Thoumine, O., Tardy, Y., and Meister, J.J. (2002). Contribution of the nucleus to the mechanical properties of endothelial cells. J Biomech 35, 177-187.
    Chen, J.J., Peck, K., Hong, T.M., Yang, S.C., Sher, Y.P., Shih, J.Y., Wu, R., Cheng, J.L., Roffler, S.R., Wu, C.W., et al. (2001). Global analysis of gene expression in invasion by a lung cancer model. Cancer Res 61, 5223-5230.
    Chen, N., and Debnath, J. (2010). Autophagy and tumorigenesis. FEBS Lett 584, 1427-1435.
    Chiu, S.J., Jiang, S.T., Wang, Y.K., and Tang, M.J. (2002). Hepatocyte growth factor upregulates alpha2beta1 integrin in Madin-Darby canine kidney cells: implications in tubulogenesis. J Biomed Sci 9, 261-272.
    Choi, C.K., Vicente-Manzanares, M., Zareno, J., Whitmore, L.A., Mogilner, A., and Horwitz, A.R. (2008). Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol 10, 1039-1050.
    Chu, Y.W., Yang, P.C., Yang, S.C., Shyu, Y.C., Hendrix, M.J., Wu, R., and Wu, C.W. (1997). Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 17, 353-360.
    Costa, K.D. (2003). Single-cell elastography: probing for disease with the atomic force microscope. Dis Markers 19, 139-154.
    Cross, S.E., Jin, Y.S., Rao, J., and Gimzewski, J.K. (2007). Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2, 780-783.
    dos Remedios, C.G., Chhabra, D., Kekic, M., Dedova, I.V., Tsubakihara, M., Berry, D.A., and Nosworthy, N.J. (2003). Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83, 433-473.
    Engler, A.J., Sen, S., Sweeney, H.L., and Discher, D.E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126, 677-689.
    Esue, O., Carson, A.A., Tseng, Y., and Wirtz, D. (2006). A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin. J Biol Chem 281, 30393-30399.
    Even-Ram, S., Artym, V., and Yamada, K.M. (2006). Matrix control of stem cell fate. Cell 126, 645-647.
    Fernandez, A.F., and Esteller, M. (2010). Viral epigenomes in human tumorigenesis. Oncogene 29, 1405-1420.
    Friedland, J.C., Lee, M.H., and Boettiger, D. (2009). Mechanically activated integrin switch controls alpha5beta1 function. Science 323, 642-644.
    Gabarra-Niecko, V., Schaller, M.D., and Dunty, J.M. (2003). FAK regulates biological processes important for the pathogenesis of cancer. Cancer Metastasis Rev 22, 359-374.
    Geiger, B., Spatz, J.P., and Bershadsky, A.D. (2009). Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10, 21-33.
    Gluck, U., Kwiatkowski, D.J., and Ben-Ze'ev, A. (1993). Suppression of tumorigenicity in simian virus 40-transformed 3T3 cells transfected with alpha-actinin cDNA. Proc Natl Acad Sci U S A 90, 383-387.
    Helfman, D.M., and Pawlak, G. (2005). Myosin light chain kinase and acto-myosin contractility modulate activation of the ERK cascade downstream of oncogenic
    Ras. J Cell Biochem 95, 1069-1080.
    Huang, S., and Ingber, D.E. (2005). Cell tension, matrix mechanics, and cancer development. Cancer Cell 8, 175-176.
    Ivaska, J., Pallari, H.M., Nevo, J., and Eriksson, J.E. (2007). Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313, 2050-2062.
    Izawa, I., Amano, M., Chihara, K., Yamamoto, T., and Kaibuchi, K. (1998). Possible involvement of the inactivation of the Rho-Rho-kinase pathway in oncogenic Ras-induced transformation. Oncogene 17, 2863-2871.
    Janda, E., Lehmann, K., Killisch, I., Jechlinger, M., Herzig, M., Downward, J., Beug, H., and Grunert, S. (2002). Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156, 299-313.
    Janke, J., Schluter, K., Jandrig, B., Theile, M., Kolble, K., Arnold, W., Grinstein, E., Schwartz, A., Estevez-Schwarz, L., Schlag, P.M., et al. (2000). Suppression of tumorigenicity in breast cancer cells by the microfilament protein profilin 1. J Exp Med 191, 1675-1686.
    Kalluri, R., and Neilson, E.G. (2003). Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112, 1776-1784.
    Kalluri, R., and Weinberg, R.A. (2009). The basics of epithelial-mesenchymal transition. J Clin Invest 119, 1420-1428.
    Karl, I., and Bereiter-Hahn, J. (1998). Cell contraction caused by microtubule disruption is accompanied by shape changes and an increased elasticity measured by scanning acoustic microscopy. Cell Biochem Biophys 29, 225-241.
    Levental, K.R., Yu, H., Kass, L., Lakins, J.N., Egeblad, M., Erler, J.T., Fong, S.F., Csiszar, K., Giaccia, A., Weninger, W., et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891-906.
    Li, H., Zhou, J., Miki, J., Furusato, B., Gu, Y., Srivastava, S., McLeod, D.G., Vogel, J.C., and Rhim, J.S. (2008a). Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells. Exp Cell Res 314, 92-102.
    Li, Q.S., Lee, G.Y., Ong, C.N., and Lim, C.T. (2008b). AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374, 609-613.
    Lopez, J.I., Mouw, J.K., and Weaver, V.M. (2008). Biomechanical regulation of cell orientation and fate. Oncogene 27, 6981-6993.
    Louvet-Vallee, S. (2000). ERM proteins: from cellular architecture to cell signaling. Biol Cell 92, 305-316.
    Madan, R., Smolkin, M.B., Cocker, R., Fayyad, R., and Oktay, M.H. (2006). Focal adhesion proteins as markers of malignant transformation and prognostic indicators in breast carcinoma. Hum Pathol 37, 9-15.
    Mahadev, K., Raval, G., Bharadwaj, S., Willingham, M.C., Lange, E.M., Vonderhaar, B., Salomon, D., and Prasad, G.L. (2002). Suppression of the transformed phenotype of breast cancer by tropomyosin-1. Exp Cell Res 279, 40-51.
    Muhlrad, A., Peyser, Y.M., Nili, M., Ajtai, K., Reisler, E., and Burghardt, T.P. (2003). Chemical decoupling of ATPase activation and force production from the contractile cycle in myosin by steric hindrance of lever-arm movement. Biophys J 84, 1047-1056.
    Parekh, A., and Weaver, A.M. (2009). Regulation of cancer invasiveness by the physical extracellular matrix environment. Cell Adh Migr 3, 288-292.
    Pasapera, A.M., Schneider, I.C., Rericha, E., Schlaepfer, D.D., and Waterman, C.M. (2010). Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J Cell Biol 188, 877-890.
    Paszek, M.J., Zahir, N., Johnson, K.R., Lakins, J.N., Rozenberg, G.I., Gefen, A., Reinhart-King, C.A., Margulies, S.S., Dembo, M., Boettiger, D., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241-254.
    Paul, R.J., Bowman, P.S., and Kolodney, M.S. (2000). Effects of microtubule disruption on force, velocity, stiffness and [Ca(2+)](i) in porcine coronary arteries. Am J Physiol Heart Circ Physiol 279, H2493-2501.
    Pawlak, G., and Helfman, D.M. (2001). Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev 11, 41-47.
    Pawlak, G., and Helfman, D.M. (2002). Post-transcriptional down-regulation of ROCKI/Rho-kinase through an MEK-dependent pathway leads to cytoskeleton disruption in Ras-transformed fibroblasts. Mol Biol Cell 13, 336-347.
    Pelling, A.E., Dawson, D.W., Carreon, D.M., Christiansen, J.J., Shen, R.R., Teitell, M.A., and Gimzewski, J.K. (2007). Distinct contributions of microtubule subtypes to cell membrane shape and stability. Nanomedicine 3, 43-52.
    Perez, E.A. (2009). Microtubule inhibitors: Differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol Cancer Ther 8, 2086-2095.
    Riveline, D., Zamir, E., Balaban, N.Q., Schwarz, U.S., Ishizaki, T., Narumiya, S., Kam, Z., Geiger, B., and Bershadsky, A.D. (2001). Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153, 1175-1186.
    Sastry, S.K., and Burridge, K. (2000). Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp Cell Res 261, 25-36.
    Sheridan, C., Kishimoto, H., Fuchs, R.K., Mehrotra, S., Bhat-Nakshatri, P., Turner, C.H., Goulet, R., Jr., Badve, S., and Nakshatri, H. (2006). CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8, R59.
    Sommers, C.L., Walker-Jones, D., Heckford, S.E., Worland, P., Valverius, E., Clark, R., McCormick, F., Stampfer, M., Abularach, S., and Gelmann, E.P. (1989). Vimentin rather than keratin expression in some hormone-independent breast cancer cell lines and in oncogene-transformed mammary epithelial cells. Cancer Res 49, 4258-4263.
    Spudich, J.A. (2001). The myosin swinging cross-bridge model. Nat Rev Mol Cell Biol 2, 387-392.
    Suresh, S. (2007). Biomechanics and biophysics of cancer cells. Acta Biomater 3, 413-438.
    Tan, J.L., Tien, J., Pirone, D.M., Gray, D.S., Bhadriraju, K., and Chen, C.S. (2003). Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A 100, 1484-1489.
    Tanaka, M., Mullauer, L., Ogiso, Y., Fujita, H., Moriya, S., Furuuchi, K., Harabayashi, T., Shinohara, N., Koyanagi, T., and Kuzumaki, N. (1995). Gelsolin: a candidate for suppressor of human bladder cancer. Cancer Res 55, 3228-3232.
    Thiery, J.P., Acloque, H., Huang, R.Y., and Nieto, M.A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890.
    Thompson, E.W., Newgreen, D.F., and Tarin, D. (2005). Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res 65, 5991-5995;
    discussion 5995.
    Thompson, E.W., Paik, S., Brunner, N., Sommers, C.L., Zugmaier, G., Clarke, R., Shima, T.B., Torri, J., Donahue, S., Lippman, M.E., et al. (1992). Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150, 534-544.
    Vogel, V., and Sheetz, M. (2006). Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7, 265-275.
    Wang, N., and Stamenovic, D. (2000). Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am J Physiol Cell Physiol 279, C188-194.
    Wang, N., and Stamenovic, D. (2002). Mechanics of vimentin intermediate filaments. J Muscle Res Cell Motil 23, 535-540.
    Wang, Y.H., Chiu, W.T., Wang, Y.K., Wu, C.C., Chen, T.L., Teng, C.F., Chang, W.T., Chang, H.C., and Tang, M.J. (2007). Deregulation of AP-1 proteins in collagen gel-induced epithelial cell apoptosis mediated by low substratum rigidity. J Biol Chem 282, 752-763.
    Wei, W.C., Lin, H.H., Shen, M.R., and Tang, M.J. (2008). Mechanosensing machinery for cells under low substratum rigidity. Am J Physiol Cell Physiol 295, C1579-1589.
    Wozniak, M.A., Modzelewska, K., Kwong, L., and Keely, P.J. (2004). Focal adhesion regulation of cell behavior. Biochim Biophys Acta 1692, 103-119.
    Yokota, J. (2000). Tumor progression and metastasis. Carcinogenesis 21, 497-503.
    Zajchowski, D.A., Bartholdi, M.F., Gong, Y., Webster, L., Liu, H.L., Munishkin, A., Beauheim, C., Harvey, S., Ethier, S.P., and Johnson, P.H. (2001). Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res 61, 5168-5178.
    Zeisberg, M., and Neilson, E.G. (2009). Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119, 1429-1437.
    Zhang, X., Fournier, M.V., Ware, J.L., Bissell, M.J., Yacoub, A., and Zehner, Z.E. (2009). Inhibition of vimentin or beta1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo. Mol Cancer Ther 8, 499-508.
    Zheng, Y., Xia, Y., Hawke, D., Halle, M., Tremblay, M.L., Gao, X., Zhou, X.Z., Aldape, K., Cobb, M.H., Xie, K., et al. (2009). FAK phosphorylation by ERK primes ras-induced tyrosine dephosphorylation of FAK mediated by PIN1 and PTP-PEST. Mol Cell 35, 11-25.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE