| 研究生: |
黃志宏 Huang, Chih-Hung |
|---|---|
| 論文名稱: |
應用於壓電獵能降壓式轉換器之低功耗控制電路 Low Power Consumption Control Circuits of Buck Converter for PZT Energy Harvester |
| 指導教授: |
楊慶隆
Yang, Chin-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 獵能 、壓電換能器 、儲能電路 、降壓式轉換器 |
| 外文關鍵詞: | energy harvesting, piezoelectric transducer, accumulating charge circuits, buck converters |
| 相關次數: | 點閱:147 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出擷取振動能的獵能降壓式轉換電路,以擷取人類活動中產生的振動能量。整個獵能器系統包含:壓電換能器、整流器、儲能電路、降壓式轉換器和超級電容等五個部分。換能器擷取人類活動相關的振動能,雖然以本文研究內容顯示當壓電換能器受到外力振動瞬間,其輸出電能大約為100-400 μW功率密度,但輸出頻率極是低的,而產生微弱的平均功率(1-20 μW)。考量到電能的使用是由負載的需求決定,本系統採取使用電容作為負載。為了降低維持系統運作所需的靜態功耗,在降壓式轉換器的控制電路部分,本文使用直接以輸入電壓和輸出電壓做為控制訊號的演算法去實現控制電路。另外為了提升降壓轉換器的轉換效率,在轉換器前一級加入儲能電路區塊,用以提升轉換器轉換效率。
本文所設計降壓式轉換器,其控制電路維持靜態操作所需的功率在50 μW以內。在輸入功率約1 mW到5.5 mW區間,轉換效率為60 %。獵能器系統輸入功率在6 mW到14 mW之間,為69.51 %到82 %。
This paper proposes a buck converter for vibration energy which is generated by human actions. The whole harvester system includes piezoelectric transducers, rectifiers, accumulating charge circuits, buck converters and supercapacitor. Although the human vibration energy from piezoelectric transducers can reach 100-400 μW in the excited moment, but the average output power is ultra-low (about 1-20 μW) in a low output frequency. In consideration of the requirement of load’s using , this paper will adopt a supercapacitor as the load. For decreasing system circuit static power, in this paper the control circuit algorithm of the buck converter directly uses input voltages and output voltages as control signals, and present it. Besides we add accumulating charge circuits before the buck converter stage, it can increase the efficiency of the buck converter in the system architecture.
In this paper, the static power of the buck converter is below 50 μW and the converter efficiency is about 60 % in the region between 1 mW and 5.5 mW. In this harvester system, the converter efficiency is between 69.51 % and 82 % in the region between 6 mW and 14 mW.
[1] S. Priya and D. J. Inman:Energy Harvesting Technologies, pp. 472, 2009.
[2] J. A. Paradiso and T. Starner, "Energy scavenging for mobile and wireless electronics," Ieee Pervasive Computing, vol. 4, pp. 18-27, Jan-Mar 2005.
[3] N. G. Elvin and A. A. Elvin, “Vibrational energy harvesting from humangait,”IEEE/ASME Trans. Mechatronics, vol. 18, no. 2, pp. 637–644, Apr.2013.
[4] S. Roundy and P. K. Wright, “A piezoelectric vibration based generator for wireless electronics,” Smart Mater. Struct., vol. 13, no. 5, pp. 1131–1142, Aug. 2004.
[5] D. P. Arnold, “Review of microscale magnetic power generation,” IEEE Trans. Magn., vol. 43, no. 11, pp. 3940–3951, Nov. 2007.
[6] P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, “Energy harvesting from human and machine motion for wireless electronic devices,” Proc. IEEE, vol. 96, no. 9, pp. 1457–1486, Sep. 2008.
[7] E. Lefeuvre, A. Badel, A. Benayad, L. Lebrun, C. Richard, and D. Guyomar, “A comparison between several approaches of piezoelectric energy harvesting,” J. Phys. IV France, vol. 128, pp. 177–186, 2005.
[8] W. Q. Liu, Z. H. Feng, J. He, and R. B. Liu, “Maximum mechanical energy harvesting strategy for a piezoelement,” Smart Mater. Struct., vol. 16, pp. 2130–2136, 2007.
[9] A. Hande, A. Rajasekaran, and D. Bhatia, “Buck-boost converter based power conditioning circuit for low excitation vibration energy harvesting,” presented at the 3rd Annu. Austin Conf. Integrated Circuits and Systems, Austin, TX, 2008, [Online]. Available: http://www.texasmicropower.com/publications/ArvindhR UTD EH Full-Paper.pdf
[10] S. Hashemi, M. Sawan, and Y. Savaria, “A novel low-drop CMOS active rectifier for RF-powered devices: Experimental result,” Microelectron. J., vol. 40, pp. 1547–1554, Nov. 2009.
[11] T.T. Le, J. Han,A. von Jouanne, K. Mayaram, and T. S. Fiez, “Piezoelectric micro-power generation interface circuits,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1411–1420, Jun. 2006.
[12] C. Peters, M. Ortmanns, and Y. Manoli, “Low power high performance voltage rectifier for autonomous microsystems,” in Proc. PowerMEMS, Freiburg, Germany, 2007, pp. 217–220.
[13] Y. H. Lam, W. H. Ki, and C. Y. Tsui, “Integrated low-loss CMOS active rectifier for wirelessly powered devices,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 12, pp. 1378–1382, Dec. 2006.
[14] J. Colomer-Farrarons, P. Miribel-Catal`a, A. Saiz-Vela, M. Puig-Vidal, and J. Samitier, “Power-conditioning circuitry for a self-powered system based on micro PZT generators in a 0.13-μm low-voltage low-power technology,” IEEE Trans. Ind. Electron., vol. 55, no. 9, pp. 3249–3257, Sep. 2008.
[15] C. Peters, F. Henrici, M. Ortmanns, and Y. Manoli, “High-bandwidth floating gate CMOS rectifiers with reduced voltage drop,” in Proc. IEEE Int. Symp. Circuits Syst., Seattle, WA, May 2008, pp. 2598–2601.
[16] J. Hu and H. Min, “A low power and high performance analog front end for passive RFID transponder,” in Proc. 4th IEEE Workshop Autom. Identification Adv. Technol., 2005, pp. 199–204.
[17] L. R. Clare and S. G. Burrow, “Power conditioning for energy harvesting,” in Proc. SPIE Active Passive Smart Struct. Integr. Syst, San Diego, CA, 2008, pp. 69280A-1–69280A-13.
[18] C. Peters, O. Kessling, F. Henrici, M. Ortmanns, and Y. Manoli, “CMOS integrated highly efficient full wave rectifier,” in Proc. IEEE Int. Symp. Circuits Syst., New Orleans, LA, May 2007, pp. 2415–2418.
[19] G. Bawa and M. Ghovanloo, “Analysis, design, and implementation of a high-efficiency full-wave rectifier in standard CMOS technology,” Analog. Integr. Circ. Sig. Process., vol. 60, no. 1–2, pp. 71–81, Aug. 2009.
[20] S. Guo and H. Lee, “An efficiency-enhanced integrated CMOS rectifier with comparator-controlled switches for transcutaneous powered implants,” in Proc. IEEE Custom Integr. Circuits Conf., San Jose, CA, Sep. 2007, pp. 385–388.
[21] T. Lehmann andY. Moghe, “On-chip active power rectifiers for biomedical applications,” in Proc. IEEE Int. Symp. Circuits Syst., Kobe, Japan, May 2005, vol. 1, pp. 732–735.
[22] S. Dwari and L. Parsa, “Efficient low voltage direct AC/DC converters for self-powered wireless sensor nodes and mobile electronics,” in Proc. 30th IEEE Int. Telecommun. Energy Conf., San Diego, CA, Sep. 2008, pp. 1–7.
[23] S. Dwari and L. Parsa, “An efficient AC–DC step-up converter for lowvoltage energy harvesting,” IEEE Trans. Power Electron., vol. 25, no. 8, pp. 2188–2199, Aug. 2010.
[24] P. D. Mitcheson, T. C. Green, and E. M. Yeatman, “Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers,” Microsyst. Technol., vol. 13, pp. 1629–1635, Jul. 2007.
[25] A. Richelli, L. Colalongo, S. Tonoli, and Z. M. Kovacs-Vajna, “A 0.2−1.2V DC/DC boost converter for power harvesting applications,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1541–1546, Jun. 2009.
[26] I. Doms, P. Merken, C. Van Hoof, and R. P. Mertens, “Capacitive power management circuit for micropower thermoelectric generators with a 1.4 uA controller,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2824–2833, Oct. 2009.
[27] O. A. T. Hasib, M. Sawan, and Y. Savaria, “Fully integrated ultra-lowpower asynchronously driven step-down DC–DC converter,” in Proc. IEEE Int. Symp. Circuits Syst., Paris, France, May/Jun. 2010, pp. 877–880.
[28] Y. K. Ramadass and A. P. Chandrakasan, “Voltage scalable switched capacitor DC-DC converter for ultra-low-power on-chip applications,” in Proc. IEEE Power Electron. Spec. Conf., Orlando, FL, Jun. 2007, pp. 2353–2359.
[29] M. D. Seeman, S. R. Sanders, and J. M. Rabaey, “An ultra-low-power power management IC for energy-scavenged Wireless Sensor Nodes,” in Proc. IEEE Power Electron. Spec. Conf., Rhodes, Greece, 2008, pp. 925–931.
[30] G. K. Ottman, H. F. Hofmann, and G. A. Lesieutre, “Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode,” IEEE Trans. Power Electron., vol. 18, no. 2, pp. 696–703, Mar. 2003
[31] E. J. Carlson, K. Strunz, and B. P. Otis, “A20mVinput boost converterwith efficient digital control for thermoelectric energy harvesting,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 741–750, Apr. 2010.
[32] E. Lefeuvre, D. Audigier, C. Richard, and D. Guyomar, “Buck-boost converter for sensorless power optimization of piezoelectric energy harvester,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 2018–2025, Sep. 2007.
[33] S. R. Anton, E. Erturk, N. Kong, D. S. Ha, and D. J. Inman, “Selfcharging structures using piezoceramics and thin-film batteries,” in Proc. ASME Conf. Smart Mater., Adaptive Struct. Intell. Syst., Oxnard, CA, 2009, pp. 1–11.
[34] R. D’hulst, T. Sterken, R. Puers, G. Deconinck, and J. Driesen, “Power processing circuits for piezoelectric vibration-based energy harvesters,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4170–4177, Dec. 2010.
[35] Y. K. Ramadass andA. P.Chandrakasan, “An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 189–204, Jan. 2010.
[36] W. Wang, P. He, S. Soekamtoputra, G. Feng, K. Choi, G. Kang, S. Kim, "Dielectric Electroactive Polymer energy harvesting system forward path design for different vibration input patterns," Electro/Information Technology (EIT), 2011 IEEE International Conference on , vol., no., pp.1-6, 15-17 May 2011
[37] G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre, “Adaptive piezoelectric energy harvesting circuit for wireless remote power supply,” IEEE Trans. Power Electron., vol. 17, no. 5, pp. 669–676, Sep. 2002.
[38] J. Kymissis, C.Kendall,J Paradiso,and N. Gershenfeld,"Parasitic power harvesting in shoes," Proc. of the Second IEEE International Conference on Wearable Computing, 1998
[39] E. O. Torres and G. A. Rincon-Mora, “Electrostatic energy-harvesting and battery-charging CMOS system prototype,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 9, pp. 1938–1948, Sep. 2009.
[40] C.-Y. Hsieh, Y.-H. Lee, Y.-Y. Yang, T.-C. Huang, K.-H. Chen, C.-C. Huang, and Y.-H. Lin, “A battery-free225 nW buck converter for wireless RF energy harvesting with Dynamic on/off time and adaptive phase lead control,” in Proc. IEEE Symp. VLSI Circuits, 2011, pp. 242–243.
[41] S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright, and V. Sundararajan "Improving Power Output for Vibration-Based Energy Scavengers", Institute of Electrical and Electronics Engineers Inc., vol. 4,pp.28-36,January/March 2005.
[42] 吳宗錫,"撥動式壓電獵能器之分析與實作",碩士論文,國立成功大學,2011
[43] 林蕙君、舒貽忠,"壓電振能擷取簡介",國立台灣大學應用力學研究所
[44] Y. K. Ramadass and A. P. Chandrakasan, “A batteryless thermoelectric energy-harvesting interface circuit with 35 mV startup voltage,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 333–341, Jan. 2011.
[45] Y. Ammar, A. Buhrig, M. Marzencki, B. Charlot, S. Basrour, K. Matou, and M. Renaudin, “Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator,” in Proc. Joint Conf. Smart Objects Ambient Intell., Grenoble, France, Oct. 2005, pp. 287–292.
[46] Y. Y. Chen, D. Vasic, F. Costa, W. J. Wu, C.K.Lee, "Self-powered piezoelectric energy harvesting device using velocity control synchronized switching technique," IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, vol., no., pp.1785,1790, 7-10 Nov. 2010
[47] R. W. Erickson and D. Maksimovic, the Fundamental of Power Electronics, 2nd ed. Boston, MA: Kluwer Academic, 2001
[48] Xinping Cao; Wen-Jen Chiang; Ya-Chin King; Yi-Kuen Lee; , "Electromagnetic Energy Harvesting Circuit With Feedforward and Feedback DC–DC PWM Boost Converter for Vibration Power Generator System," Power Electronics, IEEE Transactions on , vol.22, no.2, pp.679-685, March 2007
[49] M. H. Rashid:Power Electronics Circuits, Devices and Applications,3rd ed
[50] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design.
[51] J. Kim, C. Kim, "A DC–DC Boost Converter With Variation-Tolerant MPPT Technique and Efficient ZCS Circuit for Thermoelectric Energy Harvesting Applications," Power Electronics, IEEE Transactions on, vol.28, no.8, pp.3827,3833, Aug. 2013
[52] N. Kong and D. S. Ha, “Low-power design of a self-powered piezoelectric energy harvesting system with maximum power point tracking,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2298–2308, May 2012.