簡易檢索 / 詳目顯示

研究生: 楊紘先
Yang, Hung-Hsien
論文名稱: 以溼式化學法合成氧化鋅/二氧化鈦複合奈米結構之研究
Wet-chemical routes to ZnO / TiO2 composite nanostructures
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 108
中文關鍵詞: 奈米複合材料氧化鋅二氧化鈦
外文關鍵詞: TiO2, ZnO, nanocomposites
相關次數: 點閱:63下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究乃以兩步驟法成長多種型態之單純氧化鋅與氧化鋅-二氧化鈦奈米複合結構材料,第一步驟均先利用化學浴沉積法(chemical bath deposition)成長氧化鋅奈米線陣列於氧化銦錫(Indium Tin Oxide)基板上,再於此奈米線陣列上以溼式化學法(wet-chemical routes)二次步驟成長氧化鋅或二氧化鈦,以形成各種型態之奈米複合材料。本研究利用之二次步驟與形成之新穎奈米複合結構如下:以有機胺為鹼源之水熱法(hydrothermal method) 於反應溫度150℃下,可產生多種型態之片狀三維氧化鋅奈米結構於於奈米線陣列頂端。而以反應溫度230℃長時間反應,則可成長出薄膜-線-薄膜(film-wire-film)之特殊氧化奈米鋅複合結構。若以氨水為鹼源之溶劑熱法(solvothermal method)可於水溶液中,順著花狀氧化鋅奈米線陣列成長出樹枝狀氧化鋅奈米複合結構。於酒精溶液中,則可藉由反應器之密封程度來控制溶液中氨氣逸散速率,進而控制溶液之pH值,成長出有圓盤狀奈米顆粒於奈米線中心之氧化鋅奈米複合材料。此外,可藉由改變溶液含水量以溶膠-凝膠法(sol-gel process)成長各種厚度之鈦酸鋅殼層於氧化鋅奈米線陣列表面。亦可用不同濃度之前驅物形成不同填滿程度之氧化鋅-二氧化鈦奈米複合薄膜,還可以加入介面活性劑聚乙二醇,成長表面起伏度大之氧化鋅-二氧化鈦奈米複合薄膜。且若以三級丁醇為溶劑,加入聚乙二醇反應後,可形成一填滿程度高且龜裂情況較少之氧化鋅-二氧化鈦奈米複合薄膜。

    Syntheses of versatile ZnO and ZnO/TiO2 nanocomposites have been performed using various two-step methods in this study. The fist step for all nanocomposites is the formation of the ZnO nanowire (NW) arrays on indium tin oxide (ITO) substrates using chemical bath deposition. Then the syntheses of ZnO nanoparticles (NPs), ZnO nanobranches or TiO2 NPs on/within the ZnO NW arrays are conducted further using various wet-chemical routes. Hydrothermal syntheses of the 3-dimensional sheet-like ZnO nanostructures and the ZnO films on the top of the ZnO NW arrays have been achieved using HMTA and Zn(Ac)2 at 150 and 230 oC, respectively. On the other hand, using NH4OH and Zn(Ac)2, the formation of the branch-like ZnO nanocompsoites is achievable by solvothermal method. It was also found that the ZnO nanodisks are able to be formed around the NWs by using ethanol as solvent and controlling the reactor pressure during the solvothermal process. Moreover, well-aligned ZnO/ZnTiO3 core-shell NWs with various shell thicknesses have been successfully formed on the ITO substrates when adjusting the H2O concentration in TBOT/AA/ethanol solution using sol-gel method in the second step. Growth of TiO2 within the interstices of the ZnO NW arrays is achievable as well by varying the TBOT concentrations. PEG has been added into the solution for the formation of the ZnO NW/TiO2 NP composite films as well. The effects of the solvent on the formation of the ZnO NW/TiO2 NP composite films have been investigated in this study. It reveals that ZnO NW/TiO2 NP composite films with fewer cracks could be formed on ITO substrate by using tert-buthanol as solvent in the sol-gel process.

    第一章 緒論...............................................1 1-1 奈米複合材料........................................1 1-2 一維氧化鋅奈米結構..................................2 1-3 研究動機............................................3 第二章 理論基礎...........................................4 2-1 以水溶液法於基板上成長氧化鋅奈米線陣列..............4 2-2 溶液法合成氧化鋅奈米複合材料........................5 2-2-1 藉由結構控制劑成長氧化鋅奈米複合結構之材料......5 2-2-1-1 以檸檬酸鈉為結構控制劑成長氧化鋅奈米複合結構 之材料......................................6 2-2-1-2 以有機胺類為結構控制劑成長氧化鋅奈米複合結構 之材料......................................8 2-2-1-3 搭配使用有機二胺與檸檬酸鹽為結構控制劑成長氧 化鋅奈米複合結構之材料.....................12 2-2-2 藉由特殊反應物成長氧化鋅奈米複合結構之材料.....15 2-3 二氧化鈦的製備方法.................................17 2-3-1 二氧化鈦奈米粒子之製備方式.....................17 2-3-1-1 液相合成法.................................17 2-3-1-2 氣相合成法.................................19 2-3-2 二氧化鈦奈米管的製備方式.......................20 2-3-2-1 模板法.....................................20 2-3-2-2 水熱法.....................................21 2-3-2-3 陽極氧化法.................................21 第三章 實驗步驟與研究方法................................23 3-1 實驗材料...........................................23 3-2 實驗流程...........................................25 3-2-1基板前處理與晶種層披覆..........................26 3-2-2 成長氧化鋅奈米線陣列...........................26 3-2-3 以有機胺為鹼源之水熱法成長氧化鋅奈米複合材料...27 3-2-4 以氨水為鹼源之溶劑熱法成長氧化鋅奈米複合材料...27 3-2-5 以四丁基鈦酸鹽為前驅物之溶膠-凝膠法成長氧化鋅-二 氧化鈦奈米複合材料.............................28 3-3 分析與鑑定.........................................29 3-3-1 掃描式電子顯微鏡與陰極發光分析3-3-2穿透式電子顯微 鏡分析.........................................29 3-3-2 穿透式電子顯微鏡分析...........................31 3-3-3 X光繞射分析....................................34 3-3-4 拉曼光譜分析儀.................................35 第四章 二次步驟成長氧化鋅奈米複合材料....................37 4-1 第一步驟以化學浴沉積法成長氧化鋅奈米線陣列.........37 4-1-1 以有機胺為鹼源之化學浴沉積法成長氧化鋅奈米線陣列 ...............................................38 4-1-2 以氨水為鹼源之化學浴沉積法成長氧化鋅奈米線陣列.39 4-1-3 不同鹼源對氧化鋅奈米線陣列光學性質之影響….....41 4-2 第二步驟以有機胺為鹼源之水熱法成長氧化鋅奈米複合材料 ...................................................43 4-2-1 反應物濃度對氧化鋅奈米複合材料之影響...........43 4-2-1-1 反應物濃度對氧化鋅奈米複合材料型態之影響...43 4-2-1-2 氧化鋅奈米複合材料結構之分析...............46 4-2-2 反應溫度對氧化鋅奈米複合材料型態之影響.........49 4-2-3 反應時間對氧化鋅奈米複合材料型態之影響.........52 4-2-4 第一步驟成長之氧化鋅奈米線陣列對氧化鋅奈米複合材 料型態之影響...................................54 4-3 第二步驟以氨水為鹼源之溶劑熱法成長氧化鋅奈米複合材料 ...................................................56 4-3-1 第一步驟成長之氧化鋅奈米線陣列對氧化鋅奈米複合材 料型態之影響...................................56 4-3-2 溶劑對氧化鋅奈米複合材料型態之影響.............58 4-3-3 氨水濃度對氧化鋅奈米複合材料型態之影響.........60 4-3-4 反應器密封程度對氧化鋅奈米複合材料之影響.......63 4-3-4-1 反應器密封程度對氧化鋅奈米複合材料型態之影響 ...........................................64 4-3-4-2 氧化鋅奈米複合材料結構之分析...............68 4-4 結論...............................................71 第五章 溶膠-凝膠法二次步驟成長氧化鋅-二氧化鈦奈米複合材料 ..................................................72 5-1 溶液pH值對複合材料型態之影響.......................72 5-2 溶液含水量對複合材料之影響.........................79 5-2-1 溶液含水量對複合材料型態之影響.................79 5-2-2 核-殼奈米線複合材料之結構分析..................81 5-3 前驅物濃度對複合材料之影響.........................86 5-3-1 前驅物濃度對複合材料型態之影響.................86 5-3-2 複合材料結構之分析.............................88 5-4 界面活性劑對複合材料之影響.........................90 5-4-1 界面活性劑濃度對複合材料型態之影響.............90 5-4-2 界面活性劑之分子量對複合材料型態的影響.........92 5-4-2-1 相同重量不同分子量之界面活性劑.............92 5-4-2-2 相同莫耳數不同分子量之界面活性劑...........94 5-4-3 溶劑對複合材料型態之影響.......................96 5-4-4 複合材料結構之分析.............................98 5-5 結論..............................................100 第六章 總結.............................................101 參考文獻................................................105 個人簡歷................................................108

    [1] N. Beermann, L. Vayssieres, S.E. Lindquist, A. Hagfeldt , Phys. Chem. 105 (2001) 3350.
    [2] Y. Qin, X. Wang, Z. L. Wang, Nature 451 (2008) 809
    [3] X. Han, G. Wang, Q. Wang, L. Cao, R. Liu, B. Zou, and J. G. Hou, Appl. Phys.Lett. 86 (2005) 223106.
    [4] L.F. Dong, J. Jiao, D.W. Tuggle,J. M. Petty,S. A. Elliff, M. Coulter, Appl. Phys.Lett. 82 (2003) 1096.
    [5] M. Law, L. E. Greene, J. C. Johnson et al., Nat. Mater. 4 (2005) 455.
    [6] J. B. Baxter, C. A. Schmuttenmaer, J. Phys. Chem. B 110 (2006) 25229.
    [7] Z. Y. Zhang, C. H. Jin, X. L. Liang et al., Appl. Phys. Lett. 88 (2006) 3.
    [8] C. H. Ku, J. J. Wu, Appl. Phys. Lett. 91 (2007) 093117.
    [9] S. Nakade, W. Kubo, Y. Saito et al., J. Phys. Chem. B 107 (2003) 14244 .
    [10] H. G. Agrell, G. Boschloo, A. Hagfeldt, J. Phys. Chem. B 108 (2004) 12388.
    [11] R. Könenkamp, R. C. Word, and C. Schlegel, Appl. Phys. Lett. 85 (2004) 6004.
    [12] Y. Du, S. Han, W. Jin, C. Zhou, and A. F. Levi, Appl. Phys. Lett. 83 (2003) 996.
    [13] Z. Fan, and J. G. Lu, Proc. IEEE (2005), Nagoya, Japan.
    [14] J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, Appl. Phys. Lett. 88 (2006) 233106.
    [15] L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, J. Phys. Chem.B. 105 (2001) 3350.
    [16] L. Vayssieres, K. Keis, A. Hagfeldt, S. E. Lindquist, Chem. Mater. 13 (2001) 4395.
    [17] L. Vayssieres, Adv. Mater. 15 (2003) 464
    [18] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y.Zhang, R. J. Saykally, P. Yang, Angew. Chem. Int. Ed. 42 (2003) 3031.
    [19] Y, Tak, K. Yong, J. Phys. Chem. B, 109 (2005) 19263.
    [20] K. Govender, D. S. Boyle, P. B. Kenway, P. O’Brien, J. Mater.Chem. 14 (2004) 2575.
    [21] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, J.Am. Chem. Soc. 124 (2002) 12954.
    [22] Z. R. Tian, J. A.VOIGT, J. Liu, B. Mckenzie, M. J. Mcdermott, Z. R. Tian, M. A. Rodriguez, H. Konishi, H. Xu, Nat. Mater. 2 (2003) 821.
    [23] J. H. Kim, E-M Kim, D. Andeen, D. Thomson, S. P. DenBaars, F. F. Lange, Adv. Funct. Mater. 17 (2007) 463.
    [24] C-L Kuo, T-J Kuo, M. H. Huang, J. Phys. Chem.B. 109 (2005) 20115.
    [25] H. Zhang, D. Yang, S. Li, X. Ma, Y. Ji, J. Xu, D. Que, Mater. Lett. 59 (2005) 1696
    [26] T. L. Sounart, J. Liu, J. A. Voigt, J. W. P. Hsu, E. D. Spoerke, Z. R. Tian, Y. Jiang, Adv. Funct. Mater. 16 (2006) 335.
    [27] J. W. P. Hsu, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A. Voigt, J. Liu, Nano Lett. 5 (2005) 83.
    [28] T. L. Sounart, J. Liu, J. A. Voigt, M. Huo, E. D. Spoerke, B. McKenzie, J. Am. Chem. Soc. 129 (2007) 15786.
    [29] F. Zhao, X. Li, J-G Zheng, X. Yang, F. Zhao, K. S. Wong, J. Wang, W. Lin, M. Wu, Q. Su, Chem. Mater. 20 (2008) 1197.
    [30] F. Lu, W. Cai, Y. Zhang, Adv. Funct. Mater. 18 (2008) 1047.
    [31] T. Zhang, W. Dong, M. K-Brewer, S. Konar, R. N. Njabon, Z. R. Tian, J. Am. Chem. Soc. 128 (2006) 10960.
    [32] X. P. Gao, Z. F. Zheng, H. Y. Zhu, G. L. Pan, J. L. Bao, F. Wuac, D. Y. Songa, Chem. Commun. (2004) 1428.
    [33] C. Li, W. Lei, X. Zhang, J. X. Wang, X. W. Sun, S. T. Tan, J. Vac. Sci. Technol. B 25 (2007) 590.
    [34] T. Ohnoa, M. Akiyoshi, T. Umebayashi ,K. Asai, T. Mitsui, M. Matsumur, Applied catalysis A. 265 (2004) 115.
    [35] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y .Taga, Science 293 (2001) 269.
    [36] I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi, J. Mol. Catal.A-Chem. 161 (2000) 205.
    [37] Jung Oh-Jin, Kim Sam-Hyeok, Heong KyunHoom,W. Li, and S. Ismat Saha Bull. Korean. Chem. Soc. 24 (2003) 1.
    [38] P. Hoyer, Langmuir, 1996, 12, 1411-1413.
    [39] A. Michailowski, D. Aimawlawi, G. Cheng, M. Moskovits, Chemical Physics Letters, 2001, 349, 1-5.
    [40] J. Huang, T. Kunitake, S.Y. Onoue, ChemComm., 2004, 10008-1009.
    [41] X. Liu, T. F. Jaramillo, J. Mater. Res., 2005, 20, 1093-1096.
    [42] T. Kasuga, Langmuir, 1998, 14, 3160-3163.
    [43] V. B. Dmitry, N. P. Valentin, J. Mater. Chem., 2004, 14, 3700- 3377.
    [44] H. Peng, G. Li, Z. Zhang, Mater. Letters, 2005, 59, 1142-1145.
    [45] V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochim. Acta.,1999, 45, 921-929.
    [46] D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z.Chen, E. C. Dickey, J. Mater. Res., 2001, 16, 3331.
    [47] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes,Nano Letters, 2005, 5, 191-195.
    [48] Q. Cai, M. Paulose, O. K. Varghese, C. A. Grimes, J. Mater. Res.,2005, 20, 230-236.
    [49] G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, C. A. Grimes,J. Mater. Res., 2003, 18, 2588-2593.
    [50] G. K. Mor, O. K. Varghese, M. Paulose, C. A. Grimes, Adv. Funct.Mater., 2005, 15, 1291-1296.
    [51] J. M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem., Int. Ed., 2005,44, 2100-2120.
    [52] 汪建民,材料分析,中國材料科學學會, 1998。
    [53] S. Yamabi and H. Imai, J. Mater. Chem. 12 (2002) 3773.
    [54] 賴致遠,化學浴沉積法合成氧化鋅奈米線及其特性分析,碩士論文 (國立成功大學, 2006).
    [55] U. Muller, Inorganic structural chemistry (John Wiley & Sons Ltd., 1993).
    [56] E. Hosono, S. Fujihara, I. Honma, H. Zhou, Adv. Mater., 17 (2005) 2091.
    [57] S. Doeuff, M. Henry, C. Sanchez, J. Livage, J. Non-Cryst. Solids 89 (1987) 206.
    [58] M. H. Laio, C. H. Hsu, D. H. Chen, J. Solid State Chem. 179 (2006) 2020.

    下載圖示 校內:2010-08-26公開
    校外:2010-08-26公開
    QR CODE