| 研究生: |
楊紘先 Yang, Hung-Hsien |
|---|---|
| 論文名稱: |
以溼式化學法合成氧化鋅/二氧化鈦複合奈米結構之研究 Wet-chemical routes to ZnO / TiO2 composite nanostructures |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 奈米複合材料 、氧化鋅 、二氧化鈦 |
| 外文關鍵詞: | TiO2, ZnO, nanocomposites |
| 相關次數: | 點閱:63 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究乃以兩步驟法成長多種型態之單純氧化鋅與氧化鋅-二氧化鈦奈米複合結構材料,第一步驟均先利用化學浴沉積法(chemical bath deposition)成長氧化鋅奈米線陣列於氧化銦錫(Indium Tin Oxide)基板上,再於此奈米線陣列上以溼式化學法(wet-chemical routes)二次步驟成長氧化鋅或二氧化鈦,以形成各種型態之奈米複合材料。本研究利用之二次步驟與形成之新穎奈米複合結構如下:以有機胺為鹼源之水熱法(hydrothermal method) 於反應溫度150℃下,可產生多種型態之片狀三維氧化鋅奈米結構於於奈米線陣列頂端。而以反應溫度230℃長時間反應,則可成長出薄膜-線-薄膜(film-wire-film)之特殊氧化奈米鋅複合結構。若以氨水為鹼源之溶劑熱法(solvothermal method)可於水溶液中,順著花狀氧化鋅奈米線陣列成長出樹枝狀氧化鋅奈米複合結構。於酒精溶液中,則可藉由反應器之密封程度來控制溶液中氨氣逸散速率,進而控制溶液之pH值,成長出有圓盤狀奈米顆粒於奈米線中心之氧化鋅奈米複合材料。此外,可藉由改變溶液含水量以溶膠-凝膠法(sol-gel process)成長各種厚度之鈦酸鋅殼層於氧化鋅奈米線陣列表面。亦可用不同濃度之前驅物形成不同填滿程度之氧化鋅-二氧化鈦奈米複合薄膜,還可以加入介面活性劑聚乙二醇,成長表面起伏度大之氧化鋅-二氧化鈦奈米複合薄膜。且若以三級丁醇為溶劑,加入聚乙二醇反應後,可形成一填滿程度高且龜裂情況較少之氧化鋅-二氧化鈦奈米複合薄膜。
Syntheses of versatile ZnO and ZnO/TiO2 nanocomposites have been performed using various two-step methods in this study. The fist step for all nanocomposites is the formation of the ZnO nanowire (NW) arrays on indium tin oxide (ITO) substrates using chemical bath deposition. Then the syntheses of ZnO nanoparticles (NPs), ZnO nanobranches or TiO2 NPs on/within the ZnO NW arrays are conducted further using various wet-chemical routes. Hydrothermal syntheses of the 3-dimensional sheet-like ZnO nanostructures and the ZnO films on the top of the ZnO NW arrays have been achieved using HMTA and Zn(Ac)2 at 150 and 230 oC, respectively. On the other hand, using NH4OH and Zn(Ac)2, the formation of the branch-like ZnO nanocompsoites is achievable by solvothermal method. It was also found that the ZnO nanodisks are able to be formed around the NWs by using ethanol as solvent and controlling the reactor pressure during the solvothermal process. Moreover, well-aligned ZnO/ZnTiO3 core-shell NWs with various shell thicknesses have been successfully formed on the ITO substrates when adjusting the H2O concentration in TBOT/AA/ethanol solution using sol-gel method in the second step. Growth of TiO2 within the interstices of the ZnO NW arrays is achievable as well by varying the TBOT concentrations. PEG has been added into the solution for the formation of the ZnO NW/TiO2 NP composite films as well. The effects of the solvent on the formation of the ZnO NW/TiO2 NP composite films have been investigated in this study. It reveals that ZnO NW/TiO2 NP composite films with fewer cracks could be formed on ITO substrate by using tert-buthanol as solvent in the sol-gel process.
[1] N. Beermann, L. Vayssieres, S.E. Lindquist, A. Hagfeldt , Phys. Chem. 105 (2001) 3350.
[2] Y. Qin, X. Wang, Z. L. Wang, Nature 451 (2008) 809
[3] X. Han, G. Wang, Q. Wang, L. Cao, R. Liu, B. Zou, and J. G. Hou, Appl. Phys.Lett. 86 (2005) 223106.
[4] L.F. Dong, J. Jiao, D.W. Tuggle,J. M. Petty,S. A. Elliff, M. Coulter, Appl. Phys.Lett. 82 (2003) 1096.
[5] M. Law, L. E. Greene, J. C. Johnson et al., Nat. Mater. 4 (2005) 455.
[6] J. B. Baxter, C. A. Schmuttenmaer, J. Phys. Chem. B 110 (2006) 25229.
[7] Z. Y. Zhang, C. H. Jin, X. L. Liang et al., Appl. Phys. Lett. 88 (2006) 3.
[8] C. H. Ku, J. J. Wu, Appl. Phys. Lett. 91 (2007) 093117.
[9] S. Nakade, W. Kubo, Y. Saito et al., J. Phys. Chem. B 107 (2003) 14244 .
[10] H. G. Agrell, G. Boschloo, A. Hagfeldt, J. Phys. Chem. B 108 (2004) 12388.
[11] R. Könenkamp, R. C. Word, and C. Schlegel, Appl. Phys. Lett. 85 (2004) 6004.
[12] Y. Du, S. Han, W. Jin, C. Zhou, and A. F. Levi, Appl. Phys. Lett. 83 (2003) 996.
[13] Z. Fan, and J. G. Lu, Proc. IEEE (2005), Nagoya, Japan.
[14] J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, Appl. Phys. Lett. 88 (2006) 233106.
[15] L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, J. Phys. Chem.B. 105 (2001) 3350.
[16] L. Vayssieres, K. Keis, A. Hagfeldt, S. E. Lindquist, Chem. Mater. 13 (2001) 4395.
[17] L. Vayssieres, Adv. Mater. 15 (2003) 464
[18] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y.Zhang, R. J. Saykally, P. Yang, Angew. Chem. Int. Ed. 42 (2003) 3031.
[19] Y, Tak, K. Yong, J. Phys. Chem. B, 109 (2005) 19263.
[20] K. Govender, D. S. Boyle, P. B. Kenway, P. O’Brien, J. Mater.Chem. 14 (2004) 2575.
[21] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, J.Am. Chem. Soc. 124 (2002) 12954.
[22] Z. R. Tian, J. A.VOIGT, J. Liu, B. Mckenzie, M. J. Mcdermott, Z. R. Tian, M. A. Rodriguez, H. Konishi, H. Xu, Nat. Mater. 2 (2003) 821.
[23] J. H. Kim, E-M Kim, D. Andeen, D. Thomson, S. P. DenBaars, F. F. Lange, Adv. Funct. Mater. 17 (2007) 463.
[24] C-L Kuo, T-J Kuo, M. H. Huang, J. Phys. Chem.B. 109 (2005) 20115.
[25] H. Zhang, D. Yang, S. Li, X. Ma, Y. Ji, J. Xu, D. Que, Mater. Lett. 59 (2005) 1696
[26] T. L. Sounart, J. Liu, J. A. Voigt, J. W. P. Hsu, E. D. Spoerke, Z. R. Tian, Y. Jiang, Adv. Funct. Mater. 16 (2006) 335.
[27] J. W. P. Hsu, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A. Voigt, J. Liu, Nano Lett. 5 (2005) 83.
[28] T. L. Sounart, J. Liu, J. A. Voigt, M. Huo, E. D. Spoerke, B. McKenzie, J. Am. Chem. Soc. 129 (2007) 15786.
[29] F. Zhao, X. Li, J-G Zheng, X. Yang, F. Zhao, K. S. Wong, J. Wang, W. Lin, M. Wu, Q. Su, Chem. Mater. 20 (2008) 1197.
[30] F. Lu, W. Cai, Y. Zhang, Adv. Funct. Mater. 18 (2008) 1047.
[31] T. Zhang, W. Dong, M. K-Brewer, S. Konar, R. N. Njabon, Z. R. Tian, J. Am. Chem. Soc. 128 (2006) 10960.
[32] X. P. Gao, Z. F. Zheng, H. Y. Zhu, G. L. Pan, J. L. Bao, F. Wuac, D. Y. Songa, Chem. Commun. (2004) 1428.
[33] C. Li, W. Lei, X. Zhang, J. X. Wang, X. W. Sun, S. T. Tan, J. Vac. Sci. Technol. B 25 (2007) 590.
[34] T. Ohnoa, M. Akiyoshi, T. Umebayashi ,K. Asai, T. Mitsui, M. Matsumur, Applied catalysis A. 265 (2004) 115.
[35] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y .Taga, Science 293 (2001) 269.
[36] I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi, J. Mol. Catal.A-Chem. 161 (2000) 205.
[37] Jung Oh-Jin, Kim Sam-Hyeok, Heong KyunHoom,W. Li, and S. Ismat Saha Bull. Korean. Chem. Soc. 24 (2003) 1.
[38] P. Hoyer, Langmuir, 1996, 12, 1411-1413.
[39] A. Michailowski, D. Aimawlawi, G. Cheng, M. Moskovits, Chemical Physics Letters, 2001, 349, 1-5.
[40] J. Huang, T. Kunitake, S.Y. Onoue, ChemComm., 2004, 10008-1009.
[41] X. Liu, T. F. Jaramillo, J. Mater. Res., 2005, 20, 1093-1096.
[42] T. Kasuga, Langmuir, 1998, 14, 3160-3163.
[43] V. B. Dmitry, N. P. Valentin, J. Mater. Chem., 2004, 14, 3700- 3377.
[44] H. Peng, G. Li, Z. Zhang, Mater. Letters, 2005, 59, 1142-1145.
[45] V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochim. Acta.,1999, 45, 921-929.
[46] D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z.Chen, E. C. Dickey, J. Mater. Res., 2001, 16, 3331.
[47] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes,Nano Letters, 2005, 5, 191-195.
[48] Q. Cai, M. Paulose, O. K. Varghese, C. A. Grimes, J. Mater. Res.,2005, 20, 230-236.
[49] G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, C. A. Grimes,J. Mater. Res., 2003, 18, 2588-2593.
[50] G. K. Mor, O. K. Varghese, M. Paulose, C. A. Grimes, Adv. Funct.Mater., 2005, 15, 1291-1296.
[51] J. M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem., Int. Ed., 2005,44, 2100-2120.
[52] 汪建民,材料分析,中國材料科學學會, 1998。
[53] S. Yamabi and H. Imai, J. Mater. Chem. 12 (2002) 3773.
[54] 賴致遠,化學浴沉積法合成氧化鋅奈米線及其特性分析,碩士論文 (國立成功大學, 2006).
[55] U. Muller, Inorganic structural chemistry (John Wiley & Sons Ltd., 1993).
[56] E. Hosono, S. Fujihara, I. Honma, H. Zhou, Adv. Mater., 17 (2005) 2091.
[57] S. Doeuff, M. Henry, C. Sanchez, J. Livage, J. Non-Cryst. Solids 89 (1987) 206.
[58] M. H. Laio, C. H. Hsu, D. H. Chen, J. Solid State Chem. 179 (2006) 2020.