簡易檢索 / 詳目顯示

研究生: 林子涵
Lin, Tzu-Han
論文名稱: 多孔隙基板限制成長有機-無機鈣鈦礦與鈣鈦礦電阻式記憶體
A study on anodic alunminum oxide for growing hybrid organ-inorganic perovskite-base resistive switching
指導教授: 施權峰
Shih, Chuan-Feng
共同指導教授: 呂正傑
Leu, Ching-Chich
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 115
中文關鍵詞: 有機鈣鈦礦陽極氧化鋁電阻式記憶體
外文關鍵詞: organic perovskite, anodized aluminum, resistive memory
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 口試合格證明 I 摘要 II Extended Abstract IV 誌謝 LXV 目錄 LXVI 圖目錄 LXVIII 表目錄 LXXVII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 文獻回顧與理論基礎 4 2-1 有機無機鈣鈦礦 4 2-2 記憶體介紹 6 2-2-1 電阻式記憶體 6 2-2-2 相變化記憶體 8 2-2-3 鐵電記憶體 9 2-2-4 磁阻式記憶體 10 2-3 電阻轉換機制 10 2-3-1熱化學效應(Thermochemical effect,TCM) 10 2-3-2價電子轉換效應(Valence change effect,VCM) 11 2-3-3金屬離子的電化學效應(Electrochemical metallization effect,ECM) 11 2-4 介電層導電 12 2-4-1離子傳導(Ionic conduction) 12 2-4-2熱發射(Thermionic emission)蕭特基發射(Schottky emission) 12 2-4-3普爾-法蘭克發射(Poole-Frenkel emission/ P-F Emission) 13 2-4-4空間電荷限制電流(Space-Charge-Limited-Current,SCLC) 13 2-4-5 福勒-諾德漢穿隧F-N穿隧與直接穿隧(Fowler-Nordheim and Direct Tunneling) 13 2-4-6歐姆傳導(Ohmic Conduction) 15 2-5 相關文獻回顧 15 2-5-1有機鈣鈦礦RRAM文獻 15 2-5-2多孔陽極氧化鋁模板(Anodic aluminum oxide templete,AAO) 26 2-5-3陽極氧化鋁相關文獻回顧 27 第三章 有機鈣鈦礦薄膜與AAO製備 36 3-1 實驗流程 36 3-1-1 基板清洗 36 3-1-2 有機鈣鈦礦膜製備 36 3-1-3 AAO製程步驟 37 3-2 電阻式記憶體元件製程 38 3-2-1 鈣鈦礦(MAPbI3 、FAMAPbI3、FAMACsPbI3)薄膜製備 38 3-2-2 PMMA層製備 38 3-2-3 鋁電極蒸鍍 38 3-3 物性與電性分析儀器介紹 39 3-3-1 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 39 3-3-2 結晶繞射分析(X-ray diffraction,XRD) 40 3-3-3 微拉曼及微光激發螢光光譜儀(Micro-Raman & Micro-PL Spectrometer) 42 3-3-4 紫外光-可見光-近紅外光分光光譜儀 (UV/Visible/NIR Spectrophotometer) 44 3-3-5 電壓-電流量測 45 第四章 結果與討論 47 4.1陽極氧化鋁模板製程探討 47 4.1.1不同陽極氧化鋁參數 47 4.1.2矽基板上製備陽極氧化鋁模板 62 4.1.3移除阻擋層參數 67 4.1.4模板重複性測試 77 4.2陽極氧化鋁模輔助有機鈣鈦礦成長 81 4.2.1以不同條件將鈣鈦礦填入AAO模板 81 4.2.2將鈣鈦礦填入不同孔洞大小AAO模板 92 4.2.3平面與孔洞中鈣鈦礦特性之比較 99 4.3以AAO成長有機鈣鈦礦之RRAM電性分析 103 第五章 結論與未來規劃 112 5.1結論 112 5.2未來規劃 113 第六章 參考文獻 114

    [1] Z. Yi, N. H. Ladi, X. Shai, H. Li, Y. Shen, and M. Wang, "Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications," Nanoscale Advances, vol. 1, no. 4, pp. 1276-1289, 2019.
    [2] Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, and K. Zhu, "Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys," Chemistry of Materials, vol. 28, no. 1, pp. 284-292, 2015.
    [3] E. Yoo, M. Lyu, J.-H. Yun, C. Kang, Y. Choi, and L. Wang, "Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH3NH3PbI3−xClx/FTO structure," Journal of Materials Chemistry C, vol. 4, no. 33, pp. 7824-7830, 2016.
    [4] E. J. Yoo, M. Lyu, J. H. Yun, C. J. Kang, Y. J. Choi, and L. Wang, "Resistive Switching Behavior in Organic-Inorganic Hybrid CH3NH3 PbI3-x Clx Perovskite for Resistive Random Access Memory Devices," Adv Mater, vol. 27, no. 40, pp. 6170-5, 2015.
    [5] K. Yan et al., "High-performance perovskite memristor based on methyl ammonium lead halides," Journal of Materials Chemistry C, vol. 4, no. 7, pp. 1375-1381, 2016.
    [6] J. H. Heo et al., "Memory effect behavior with respect to the crystal grain size in the organic-inorganic hybrid perovskite nonvolatile resistive random access memory," Sci Rep, vol. 7, no. 1, p. 16586, 2017.
    [7] C. Gu and J. S. Lee, "Flexible Hybrid Organic-Inorganic Perovskite Memory," ACS Nano, vol. 10, no. 5, pp. 5413-8, 2016.
    [8] B. Hwang and J. S. Lee, "A Strategy to Design High-Density Nanoscale Devices utilizing Vapor Deposition of Metal Halide Perovskite Materials," Adv Mater, vol. 29, no. 29, Aug 2017.
    [9] B. Hwang, C. Gu, D. Lee, and J. S. Lee, "Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory," Sci Rep, vol. 7, p. 43794, 2017.
    [10] B. Hwang and J. S. Lee, "Hybrid Organic-Inorganic Perovskite Memory with Long-Term Stability in Air," Sci Rep, vol. 7, no. 1, p. 673, 2017.
    [11] X. Guan et al., "Light-Responsive Ion-Redistribution-Induced Resistive Switching in Hybrid Perovskite Schottky Junctions," Advanced Functional Materials, vol. 28, no. 3, 2018.
    [12] A. Shaban, M. Joodaki, S. Mehregan, and I. W. Rangelow, "Probe-induced resistive switching memory based on organic-inorganic lead halide perovskite materials," Organic Electronics, vol. 69, pp. 106-113, 2019.
    [13] W. Ruan, Y. Hu, F. Xu, and S. Zhang, "Resistive switching behavior of organic-metallic halide perovskites CH3NH3Pb1−Bi Br3," Organic Electronics, vol. 70, pp. 252-257, 2019.
    [14] S. Liu, J. Tian, and W. Zhang, "Fabrication and application of nanoporous anodic aluminum oxide: a review," Nanotechnology, vol. 32, no. 22, 2021.
    [15] M. J. Ashley, M. N. O'Brien, K. R. Hedderick, J. A. Mason, M. B. Ross, and C. A. Mirkin, "Templated Synthesis of Uniform Perovskite Nanowire Arrays," J Am Chem Soc, vol. 138, no. 32, pp. 10096-9, 2016.
    [16] H.-C. Kwon, S. Ma, S.-C. Yun, G. Jang, H. Yang, and J. Moon, "A nanopillar-structured perovskite-based efficient semitransparent solar module for power-generating window applications," Journal of Materials Chemistry A, vol. 8, no. 3, pp. 1457-1468, 2020.
    [17] S. Ma et al., "Strain-Mediated Phase Stabilization: A New Strategy for Ultrastable alpha-CsPbI3 Perovskite by Nanoconfined Growth," Small, vol. 15, no. 21, p. e1900219, 2019.
    [18] X. Kong, K. Shayan, S. Lee, C. Ribeiro, S. Strauf, and S. S. Lee, "Remarkable long-term stability of nanoconfined metal-halide perovskite crystals against degradation and polymorph transitions," Nanoscale, vol. 10, no. 17, pp. 8320-8328, 2018.
    [19] S. Z. Oener et al., "Perovskite Nanowire Extrusion," Nano Lett, vol. 17, no. 11, pp. 6557-6563, 2017.
    [20] Z. Zhang, M. Wang, L. Ren, and K. Jin, "Tunability of Band Gap and Photoluminescence in CH3NH3PbI3 Films by Anodized Aluminum Oxide Templates," Sci Rep, vol. 7, no. 1, p. 1918, 2017.
    [21] H.-C. Kwon, A. Kim, H. Lee, D. Lee, S. Jeong, and J. Moon, "Parallelized Nanopillar Perovskites for Semitransparent Solar Cells Using an Anodized Aluminum Oxide Scaffold," Advanced Energy Materials, vol. 6, no. 20, 2016.
    [22] S. Lee, J. Feldman, and S. S. Lee, "Nanoconfined Crystallization of MAPbI3 to Probe Crystal Evolution and Stability," Crystal Growth & Design, vol. 16, no. 8, pp. 4744-4751, 2016.

    無法下載圖示 校內:2026-08-27公開
    校外:2026-08-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE