| 研究生: |
謝志仁 Hsieh, Chih-Jen |
|---|---|
| 論文名稱: |
應用三線圈式多單元耦合結構於非接觸式饋電軌道系統之研究 Study on Three-Coil Multi-Cell Coupled Structures for Contactless Power Track System |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 三線圈 、多單元耦合結構 、非接觸式電能傳輸 |
| 外文關鍵詞: | Three-coil, Multi-cell structure, Contactless power transfer |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨就饋電軌道系統,應用非接觸式電能傳輸技術,研製饋電軌道系統之充電區塊,提供電動載具因號誌而停駐時進行電能補給,藉以改善電動載具駕駛於無鋪設饋電軌道區段之續航力問題。為了提高長距離下傳輸效率與水平偏移容忍度,故採三線圈式感應耦合結構,透過附加獨立線圈於饋電側,有效蓄積饋電槽供給之電能以增強磁場發射,並將附加線圈設計為多單元結構使磁場均勻分布。本研究亦探討操作頻率對於三線圈式電能傳輸效率之影響,並試製三種耦合結構配置Type I、Type II與Type III,比較上述結構於兩操作頻率30 kHz與300 kHz下電能傳輸差異。由實驗結果可得Type III結構配置較能避免由於饋電與受電線圈耦合而影響傳輸效率。在傳輸間距為15 cm情況下,當操作頻率為300 kHz時,其最大傳輸效率約70 %。
This thesis is aimed at applying contactless inductive power transmission technique to implement the charging area for contactless power track system. The charging area is applied to achieve the objective that the electric vehicles can be charged when stopping at the traffic light, which improves electric vehicles endurance when driving on the road without the power track. To increase the power transfer ability of charging area with large distance and lateral misalignment, the three-coil inductive coupled structure is adopted. By placing the additional coil in the transmitter, it can enhance the magnetic flux because of the efficiently cumulative energy. The additional coil is designed as a multi-cell structure to distribute the uniform magnetic field. The transmission efficiency of the three-coil power transfer with the different operating frequency is also discussed in this study. The experimental models of the coupled structure Type I, Type II, and Type III are set up, and the power transmission efficiency with the operating frequency 30 kHz and 300 kHz are compared. The experimental results show that the Type III structure can reduce the impact of the coupling between source coil and receiving coil. When the transmission distance is 15 cm and operating frequency at 300 kHz, the transmission efficiency of the system can be up to 70 %.
[1] D. Rozario, N. A. Azeez, and S. S. Williamson “Analysis and design of coupling capacitors for contactless capacitive power transfer systems,” in Proc. IEEE ITEC, 2016, pp. 1-7.
[2] J. Dai, S. Hagen, D. C. Ludois, and I. P. Brown “Synchronous generator brushless field excitation and voltage regulation via capacitive coupling through journal bearings,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3317-3326, July 2017.
[3] B. Song, J. Shin, S. Lee, S. Shin, Y. Kim, S. Jeon, and G. Jung, “Design of a high power transfer pickup for on-line electric vehicle,” in Proc. IEEE IEVC, 2012, pp. 1-4.
[4] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, Dec. 2006.
[5] J. T. Boys, G. A. J. Elliot, and G. A. Covic, “An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 333-335, Jan. 2007.
[6] P. Sergeant and A. Van Den Bossche, “Inductive coupler for contactless power transmission,” IET Elect. Power Appl., vol. 2, no. 1, pp. 1-7, Jan. 2008.
[7] C. Park, S. Lee, S. Y. Jeong, G. H. Cho, and C. T. Rim, “Uniform power I-Type inductive power transfer system with DQ-power supply rails for on-line electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6446-6455, Apr. 2015.
[8] S Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 18-36, Aug. 2015.
[9] V. X. Thai, S. Y. Choi, B. H. Choi, Ji H. Kim, and C.T. Rim, “Coreless power supply rails compatible with both stationary and dynamic charging of electric vehicles,” in Proc. IEEE IFEEC, 2015, pp. 1-5.
[10] D. van Wageningen, T. Staring, “The Qi wireless power standard”, in Proc. 14th EPE/PEMC, pp. S15-25-S15-32, 2010.
[11] Wireless Power Consortium, “System Description Wireless Power Transfer”, Vol. I: Low Power, Part 1: Interface Definition Version 1.0, 2010.
[12] M. Treffers, “History current status and future of the wireless power consortium and the Qi interface specification”, IEEE Circuits Syst. Mag., vol. 15, no. 2, pp. 28-31, 2015.
[13] X. Liu, “Qi standard wireless power transfer technology development toward spatial freedom,” IEEE Circuits Syst. Mag., vol. 15, no. 2, pp. 32-39, 2015.
[14] X. Lu, P. Wang, D. Niyato, D. I. Kim, Z. Han, “Wireless charging technologies: Fundamentals standards and network applications,” IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 1413-1452, 2nd Quart. 2016.
[15] R. Pajer, A. Chowdhury, and M. Redič “Demodulation of feedback signal for wireless charging systems according to the Qi standard,” in Proc. IEEE IWSSIP, 2018, pp. 1-5.
[16] A4WP Wireless Power Transfer System Baseline System Specification (BSS) Version 1.3 Annex D, Alliance for Wireless Power, Beaverton, OR, USA, 2013.
[17] SAE Electric Vehicle Inductive Coupling Recommended Practice SAE J-1773, Society of Automotive Engineers, Feb. 1995.
[18] J. G. Hayes, M. G. Egan, J. M. D. Murphy, S. E. Schulz, and J. T. Hall, “Wide-load-range resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface,” IEEE Tran. Ind. Appl., vol. 35, no. 4, pp. 884-895, July 1999.
[19] J. Schneider, SAE J2954 Overview and Path Forward, SAE International, Warrendale, Pa, USA, 2013.
[20] SAE International Surface Vehicle Recommended Practice, “Wireless power transfer for light-duty plug-in/electric vehicles and alignment methodology,” SAE J2954, Rev. Nov. 2017.
[21] A. Llombart, J. L. Villa, J. Sallan, and J. F. Sanz Osorio, “High-misalignment tolerant compensation topology for ICPT systems,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 945-951, Feb. 2012.
[22] R. Itoh, H. Matsumoto, Y. Neba, and K. Ishizaka, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980-2993, June 2012.
[23] F. Musavi, M. Edington, and W. Eberle, “Wireless power transfer a survey of EV battery charging technologies,” in Proc. IEEE ECCE, 2012, pp. 1804-1810.
[24] K. Kobayashi, T. Pontefract, Y. Kamiya, and Y. Daisho, “Development and performance evaluation of a non-contact rapid charging Inductive power supply system for electric micro-bus,” in Proc. IEEE VPPC, 2011, pp 1-6.
[25] M. P. Kesler, A. B. Kurs, A. Karalis, M. Soljacic, K. L. Hall, A. J. Campanella, and K. Kulikowski, “Secure wireless energy transfer for vehicle applications,” U.S. Patent 2012/0 112 531 A1, May. 10, 2012.
[26] M. P. Kesler, A. B. Kurs, A. Karalis, M. Soljacic, K. L. Hall, and A. J. Campanella, “Wireless energy transfer for vehicle applications,” U.S. Patent 2012/0 112 538 A1, May. 10, 2012.
[27] T. Imura, H. Okabe, T. Uchida, and Y. Hori, “Study on open and short end helical antennas with capacitor in series of wireless power transfer using magnetic resonant couplings,” in Proc. IEEE IECON, 2009, pp. 3848-3853.
[28] T. Imura and Y. Hori, “Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4746-4752, 2011.
[29] A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless energy transfer via strongly coupled magnetic resonances,” Science, vol. 317, pp. 83-85, 2007.
[30] B. H. Waters, A. P. Sample, P. Bonde, and J. R. Smith, “Powering a ventricular assist device (VAD) with the free-range resonant electrical energy delivery (FREE-D) system,” in Proc. IEEE, vol. 100, no. 1, pp.138-149, Jan. 2012.
[31] S. Cheon, Y. H. Kim, S. Y. Kang, M. L. Lee, J. M. Lee, and T. Zyung, “Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2906-2914, Jul. 2011.
[32] M. Kiani and M. Ghovanloo, “The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 9, pp. 2065-2074, Sep. 2012.
[33] T. Kan, F. Lu, T. D. Nguyen, P. P. Mercier, and C. C. Mi, “Integrated coil design for EV wireless charging systems using LCC compensation topology,’’ IEEE Trans. Power Electron., vol. 33, no. 11 pp. 9231-9241, Nov. 2018.
[34] C. Xiao, D. Cheng, and K. Wei, “An LCC-C compensated wireless charging system for implantable cardiac pacemakers: theory, experiment, and safety evaluation,’’ IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4894-4905, June 2018.
[35] H. Hao, G. A. Covic, and J. T. Boys, ‘‘An approximate dynamic model of LCL-T-based inductive power transfer power supplies,’’ IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5554-5567, Oct. 2014.
[36] S. Huang, Z. Li, Y. Li, X. Yuan, and S. Cheng, “A comparative study between novel and conventional four-resonator coil structures in wireless power transfer,” IEEE Trans. Magn., vol. 50, no. 11, Nov. 2014.
[37] Y. Zhang, Z. Zhao, and T. Lu, “Quantitative analysis of system efficiency and output power of four-coil resonant wireless power transfer,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 184-190, Mar. 2015.
[38] 賴景明,應用四線圈多環同軸型感應耦合結構於大間隙無線電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2014年。
[39] 陳揚,四線圈式多環同軸型無線電能傳輸系統之匹配阻抗特性研究,國立成功大學電機工程學系碩士論文,2015年。
[40] 林奕維,應用四線圈式共振結構於大間隙非接觸式電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2016年。
[41] B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1819-1825, Jul. 2009.
[42] W. Q. Niu, J. X. Chu, W. Gu, and Ai-Di Shen, “Exact analysis of frequency splitting phenomena of contactless power transfer systems,” IEEE Trans. Circuits Syst. I., vol. 60, no. 6, pp. 1670-1677, Nov. 2013.
[43] A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544-554, Feb. 2011.
[44] Y. Zhang, Z. Zhao, and K. Chen, “Frequency-splitting analysis of four-coil resonant wireless power transfer,” IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2436-2445, Jul. 2014.
[45] J. Zhang, X. Yuan, and C. Wang, “A study of three-coil magnetically coupled resonators for wireless power transfer,” in Proc. IEEE Int. Wireless Symp., Mar. 2015, pp. 1-4.
[46] S. Moon, B. C. Kim, S. Y. Cho, C. H. Ahn, and G. W. Moon, “Analysis and design of a wireless power transfer system with an intermediate coil or high efficiency,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 5861-5870, Nov. 2014.
[47] Y. Zhang, T. Lu, and Z. Zhao, “Reducing the impact of source internal resistance by source coil in resonant wireless power transfer,” in Proc. IEEE Energy Convers. Congr. Expo., Sep. 2014, pp. 845-850.
[48] W. Zhong, C. Zhang, X. Liu, and S. Y. Ron Hui, “A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 933-942, Feb. 2015.
[49] J. Zhang, X. Yuan, C. Wang, and Y. He, “Comparative analysis of two-coil and three-coil structures for wireless power transfer,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 341-352, Jan. 2017.
[50] M. Kiani, U.-M. Jow, and M. Ghovanloo, “Design and optimization of a 3-coil inductive link for efficient wireless power transmission,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 579-591, Dec. 2011.
[51] Z. Zhang, and K. T. Chau, “Homogeneous wireless power transfer for move-and-charge,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6213-6220, Nov. 2015.
[52] H. Zeng, Z. Liu, Y. Hou, T. Hei, and B. Zhou, “Optimization of magnetic core structure for wireless charging coupler,” IEEE Trans. Magn., vol. 53, no. 6, June 2017.
[53] M. Budhia, J. T. Boys, G. A. Covic, and H. Chang-Yu, “Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 318-328, Jan. 2013.
[54] A. Zaheer, H. Hao, G. A. Covic, and D. Kacprzak, “Investigation of multiple decoupled coil primary pad topologies in lumped IPT systems for interoperable electric vehicle charging,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1937-1955, 2015.
[55] 王麒豪,應用四線圈式多單元矩陣型結構於無線電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2018年。
[56] 曾昱叡,具蜂巢式六角形結構之四線圈式無線電能傳輸系統,國立成功大學電機工程學系碩士論文,2018年。
[57] 陳勝建,非接觸式編織型饋電軌道之研究,國立成功大學電機工程學系碩士論文,2009 年。
[58] 周彥成,具多環交疊型感應耦合結構之非接觸式電動車充電平台,國立成功大學電機工程學系碩士論文,2014 年。
[59] SAE International Surface Vehicle Recommended Practice, “Wireless Power Transfer for Light-Duty Plug-In/Electric Vehicles and Alignment Methodology,” SAE J2954, Rev. Nov. 2017.
[60] K. Tachikawa, M. Kesler, and O. Atasoy, “Feasibility study of bi-directional wireless charging for vehicle-to-Grid,” SAE Technical Paper 2018-01-0669, 2018, doi:10.4271/2018-01-0669.
[61] J. Schneider, R. Carlson, J. Sirota, R. Sutton, E. Taha, M. Kesler, K. Kamichi, I. Teerlinck, and H. Abeta, Y. Minagawa, S. Yazaki, “Validation of wireless power transfer up to 11kW based on SAE J2954 with bench and vehicle testing,” SAE International: Troy, MI, USA.
[62] dsPIC30F4011/4012 Data Sheet High Performance Digital Signal Controllers, Microchip inc., 2005.