| 研究生: |
董國信 Tung, Kuo-Shin |
|---|---|
| 論文名稱: |
奈米氧化鎂、二氧化鈦之合成及應用於微波介電陶瓷之研究 Synthesis and Microwave Dielectric Applications of Magnesium Titanates Sintered by MgO and TiO2 Nanostructures |
| 指導教授: |
施權峰
Shih, Chuan-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 鈦酸鎂 、奈米線 、奈米球 、濾波器 |
| 外文關鍵詞: | Magnesium Titanates, Nanowire, Nanosphere, Filter |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以多元醇熱解法合成氧化鎂奈米結構以及水熱法合成二氧化鈦奈米線,利用這兩種奈米氧化物為先驅物合成鈦酸鎂陶瓷。
在化學法合成氧化鎂奈米球及水熱法合成二氧化鈦奈米線的研究中,藉由控制反應時間、溶液酸鹼值、反應溫度、濃度等參數,合成高比表面積之氧化鎂奈米結構和二氧化鈦奈米線,同時具有高純度、均勻性佳、再現性佳等特點,無需昂貴設備即可在低溫下大量生產奈米級粉末。
利用高比表面積的氧化鎂奈米球及二氧化鈦奈米線以無煆燒法合成鈦酸鎂,Q × f 為186,000 GHz(10 GHz),特性與文獻相似;另外,以傳統固態燒結法合成鈦酸鎂,在較低溫度下(1300 oC)便可燒結成功,並得到鈦酸鎂陶瓷的微波介電特性:εr = 15、Q × f 為386,000 GHz、τf = -55 ppm/oC。
最後,以FR4、Al2O3以及自製陶瓷鈦酸鎂做為基板,設計一個3階Butterworth 髮夾式帶通濾波器,中心頻率為2.4 GHz,頻寬10 %,並使用電磁全波模擬軟體IE3D,討論模擬與實作量測的差異。
In this paper, the MgO nanospheres and TiO2 nanowires were synthesized separately using polyol-mediated thermolysis process and hydrothermal method. Magnesium titanates that were synthesized by calcination-free solid-state method and traditional solid-state method that used TiO2 and MgO nanopowders as the starting materials.
Nano-scaled powders were obtained by controlling the reaction time, the solution pH, the reaction temperature, and the concentrations. Magnesium oxide nanospheres and titanium dioxide nanowires possessed high surface area, high purity, good uniformity, and excellent reproducibilitywithout expensive equipment can be mass produced nano-powder at low temperature.
MgO and TiO2 nano-powders with high surface area were used to synthesize the ilmenite MgTiO3. The Q × f of ~186,000 GHz was obtained by a calcination-free solid-state sintering; the value was similar with those reported in the literature. Moreover, an extremely high Q × f value of 368,000 GHz (at 10 GHz)associated with a τf of ~56 ppm/oC and a εr of ~15 was achieved by a traditional solid-state sintering at a low sintering temperature (1300 oC).
Finally, we design a three order Butterworth band-pass filter with hairpin shape on various substrates (such as FR4, Al2O3, and MgTiO3). The centeral frequency was 2.4 GHz, FBW was 10 %. The full wave E.M. simulatior IE3D was used to discuss the difference between the simulation and measurement resultes.
1 B. Wiley, Y. G. Sun, B. Mayers and Y. Xia, "Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver", J. Chem. Eur., 11,454-463,2005.
2 H. Thomas, M. Epple, M. Froba, J. Wong and A. Reller, "Metal diolates: useful precursors for tailor-made oxides prepared at low temperatures" , J. Mater. Chem.,
8,1447-1451,1998.
3 J. Lee, T. Jeong, S. Yu, S. Jin, J. Heo, W. Yi and J. M. Kim, "Secondary electron emission of MgO thin layers prepared by the spin coating method", J. Vac. Sci.
Technol., B194,1366,2001.
4 E. Knozinger, K. H. Jacob and P. J. Hofmann, "Adsorption of hydrogen on highly dispersed MgO", J. Chem. Soc. Faraday Trans., 89,1101– 1107,1993.
5 E. A. Colbourn, "Computer simulation of defects and reactions at oxide surfaces",Surf. Sci. Rep., 15,281-319,1992.
6 S. Coluccia, M. Baricco, L. Marchese, G. Martra and A. Zecchina, "Surface morphology and reactivity towards CO of MgO particles: FTIR and HRTEM studies",Spectrochim. Acta., A49,1289-1298,1993.
7 W. Langel and M. Parrinello, "Hydrolysis at stepped MgO surfaces", Phys. Rev.Lett., 73,504-507,1994.
8 R. Echterhoff and E. Knozinger, "FTIR spectroscopic characterization of the adsorption and desorption of ammonia on MgO surfaces", Surf. Sci.,230,237-244,1990.
9 H. Itoh, S. Utamapanya, J. V. Stark, K. J. Klabunde and J. R. Schlup, "Nanoscale metal oxide particles as chemical reagents. Intrinsic effects of particle size onhydroxyl content and on reactivity and acid/base properties of ultrafine magnesium oxide" , Chem. Mater., 5,71-77,1993.
10 P. D. Yang and C. M. Lieber, "Nanostructured high-temperature superconductors:creation of strong-pinning columnar defects in nanorod/superconductor composites",
J. Mater. Res., 12,2981-2996,1997.
11 C. Gao, W. Zhang, H. Li, L. Lang and Z.Xu,"Controllable Fabrication of Mesoporous MgO with Various Morphologies and Their Absorption Performance for Toxic Pollutants in Water", Crystal Growth & Design., 8,3785-3790,2008.
12 A Subramania, G Vijaya Kumar, A R Sathiya Priya and T Vasudevan, "Polyolmediated thermolysis process for the synthesis of MgO nanoparticles and nanowires", Nanotechnology., 18,225601,2007.
13 D. Ulrike, "The surface science of titanium dioxide" , Surf. Sci. Rep., 48,53,2003.
14 H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa and H. Mori, T. Sakata and S.Yanagida, "Hydrothermal Synthesis of Nanosized Anatase and Rutile TiO2 using
Amorphous Phase TiO2 " , J. Mater. Chem., 11,1694,2001.
15 Q.H. Zhang, L. Gao and J.K. Guo, "Preparation and Characterization of Nanosized TiO2 Powders From Aqueous TiCl4 solution" , Nanostructured Materials., 11,1293,
1999.
16 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176 期 90 年8 月.
17 J.H. Sohn , Y. Inaguma, S.O. Yoon, M. Itoh, T. Nakamura, S.J. Yoon and H.J. Kim,"Microwave Dielectric Characteristics of Ilmenite-TypeTitanates with High Q
Values" , J. Appl. phys., 33, 5466-5470,1994.
18 W.J. Huppmann and G.. Petzow, "Sintering processes", New York: Plenum Press.,189-202,1979.
19 肖定全,陶瓷材料,新文京開發出版, p49-55, 2003
20 F.V. Lenel, "Sintering in Presence of a Liquid Phase", Trans. Am. Inst.Mining.Met.Engrs., 878-905,1948.
21 V.N. Eremenko, Y.V. Naidich and I. Aienko, "Liquid phase sintering", New York:Consultants Bureau, 1970, ch. 4.
22 Schaffer and Saxena, "The Science and Design of Engineering Materials", Chap3.
23 D. Kajfez, "Computed model field distribution for isolated dielectric resonators ",IEEE. Trans. Microwave Theory Tech., 32,1609-1616,1984.
24 D. Kajfez, "Basic principle give understanding of dielectric waveguides and resonators ", Microwave System News., 13,152-161,1983.
25 D. Kajfez and P. Guillon, Dielectric resonators, New York: Artech House., 1989.
26 Darko Kajfez and Pierre Guillon, Dielectric Resonators, University of Mississippi.
27 David M. Pozar, Microwave engineering Reading: Addison-Wesley, 1998.
28 P. Wheless and D. Kajfez, " The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators", IEEE MTT-S, Symposium Dig.,473-476,1985.
29 Y. Kobayashi and N. Katoh, "Microwave measurement of dielectric properties of low-loss materials by dielectric rod resonator method", IEEE. Trans. Microwave
Theory Tech., 33,586-592,1985.
30 Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator short - circuited at both ends by parallel conducting plates", IEEE. Trans. Microwave
Theory Tech., 28,1077-1085,1980.
31 B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range", IEEE Trans. MTT, vol. MTTS,402-410, 1960.
32 翁敏航,射頻被動元件設計,東華書局,台灣, p126, 1996
33 L. A. Trinogga, Guo Kaizhou and I. C. Hunter, Practical microstrip circuit design.,UK: Ellis Horwood, 1991.
34 David M. Pozar, Microwave engineering., Reading: Addison-Wesley, 1998
35 R.A. Pucel, D.J. Masse and C.E. Hartwig, "Losses in microstrip ", IEEE. Trans.Microwave Theory Tech., 16, 342-350,1968.
36 G.L. Matthaei, L. Young and E.M.T. Jones, Microwave filters impedancemattching,networks and coupling structures., New York: McGraw-Hill, 1980.
37 I. Bahl and P. Bhartia, Microwave solid state circuit design, chap6 John Wiley & Sons 1988.
38 A. Peter, Microwave Engineering Passive Circuits, chap9, Prentice Hall, 1988.
39 G.L. Matthaei, L. Young and E.M.T. Jones, Microwave filters impedancemattching,networks, and coupling structures., New York: McGraw-Hill, 1980.
40 V. Nalbandian and W. Steenart, "Discontinunity in symmetric striplines due to impedance step and their compensations", IEEE Trans. Microwave Theory Tech.,
20,573-578,1980.
41 張盛富,戴明鳳, 無線通信之射頻被動電路設計,全華出版社, 1998.
42 J. Helszajn, "Microwave Engineering: Passive, Active, and Non-reciprocal Circuits",McGraw-Hill, 1992.
43 G.L. Matthaei, L. Young and E.M.T. Jones, Microwave filters impedancemattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
44 V. Nalbandian and W. Steenart, "Discontinunity in symmetric striplines due to impedance step and their compensations", IEEE Trans. Microwave Theory Tech.,
20, 573-578, 1980.
45 D. Kajfez and P. Guillon, Dielectric Resonators, University of Mississippi.
46 K.C. Gupta, R. Garg, I. Bahl and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
47 J. S.Hong and M. J.Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters", IEEE Trans. Microwave
Theory Tech., 44,2099-2109,1996.
48 W.F. Smith, 材料科學與工程,第二版, McGraw- Hill,1994.
49 J.S. Wong, "Microstrip tapped-line filter design ", IEEE Trans.Microwave Theory Tech ., 27,44-50,1979.
50 International Telephone and Telegraph Corp., Reference Data for Radio Engineers,6th Ed. Howard W. Sams Co., Inc.
51 Shindo, "Determination of the phase diagram by the slow cooling float zone method:The system MgO-TiO2 ", J.Cryst.Growth .,50,839-851, 1980
52 V.M. Ferreir, F. Azough, I.L. Baptisa and R. Rer, " Magnesium titanate microwave dielectric ceramics", Ferroelectrics., 133,127-132,1992.
53 A. Belous, O. Ovchar, D. Durilin, M. M. Krzmanc, M. Valant and D. Suvorov, "High-Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4" , J.Am.Ceram. Soc., 89,3441,2006.
54 H. Shin, H.K. Shin, H.S. Jung, S.Y. Cho, K.S. Hong, " Phase evolution and dielectricproperties of MgTi2O5 ceramic sintered with lithium borosilicate glass " , Mater. Res.
Bull., 40,2021,2005.
55 A. Subramania, G. Vijaya Kumar, A.R. Sathiya Priya and T. Vasudevan ,"Polyol-mediated thermolysis process for the synthesis of MgO nanoparticles and nanowires", Nanotechnology., 18,225601,2007.
56 高濂,李蔚, 奈米陶瓷, 五南圖書有限公司,2003 年初版一刷.
57 M.A. Petrova, G.A. Mikirticheva, A.S. Novikova, and V.F. Popova, " Spinel solid solutions in the systems MgAl2O4–ZnAl2O4 and MgAl2O4–Mg2TiO4", J. Mater.Res., 12,2584-2588,1997.
58 M.A. Petrova, G.A. Mikirticheva, A.S. Novikova and V.F. Popova, "Spinel solid solutions in the systems MgAl2O4–ZnAl2O4 and MgAl2O4–Mg2TiO4 ", J. Mater. Res.,
12,2584-2588,1997.
校內:2020-07-29公開