| 研究生: |
黃嘉浚 Huang, Chia-Chun |
|---|---|
| 論文名稱: |
基於控制障礙函數之線上動態運動原語避障軌跡修正研究 Study on CBF-based Online Dynamic Movement Primitive Trajectory Adjustment for Collision Avoidance |
| 指導教授: |
鄭銘揚
Cheng, Ming-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 協作型機械手臂 、控制障礙函數 、動態運動原語 、避障任務 、軌跡規劃 |
| 外文關鍵詞: | Collaborative Robot Manipulators, Control Barrier Function, Dynamic Movement Primitive, Collision Avoidance, Trajectory Planning |
| 相關次數: | 點閱:53 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著工業4.0和智慧製造的推進,協作型機械手臂的高效率及高靈活度,使產業界的需求日益提高,而避障技術對工廠之安全性有不可或缺的重要性。本論文針對可以軌跡模仿的動態運動原語軌跡規劃方法提出了兩種避障策略演算法。首先,本論文透過控制障礙函數於理論上可以確保系統狀態始終維持在定義之安全集合的特性,將機械手臂末端效應器的位置與速度設定為系統狀態,則即可設計控制障礙函數使動態運動原語所組成的系統狀態方程式中的耦合項確保系統維持在安全集合中,是為本論文提出的第一個主動避障策略,「基於控制障礙函數之避障耦合項」。而如果任務對軌跡形狀的一致性有強烈要求,則不適用主動避障策略,故本論文利用動態運動原語中時間尺度常數可以調節系統收斂速度的特性,並參考相對論中時間膨脹的概念,使系統在接近障礙物周圍時受到虛擬重力場的影響而降低收斂速度,一旦障礙物自動離開或人為排除後,則系統即可依原定軌跡繼續執行任務,此為本論文提出的第二個避障策略,「基於時間膨脹之時間尺度調整法」。最後,透過本論文所設計的模擬與實驗場景,在靜態或動態障礙物的實驗結果皆顯示本論文提出方法之有效性。
With the advancements of Industry 4.0 and smart manufacturing, the high efficiency and flexibility of collaborative robot manipulators have been in increasing demand. Collision avoidance technology plays a crucial role in ensuring the safety of factories. This thesis proposes two obstacle avoidance strategy algorithms for dynamic movement primitive trajectory planning that can perform trajectory imitation. First, by Control Barrier Function, it is theoretically possible to ensure that the system states always remain within a defined safe set. By setting the position and velocity of the robotic manipulator's end effector as system states, a control barrier function can be designed to ensure that the coupling terms in the system state equation composed of dynamic movement primitives keep the system within the safe set. This constitutes the first proactive obstacle avoidance strategy proposed in this thesis, "Control Barrier Function Based Collision Avoidance Coupling Term." However, if the task requires strict consistency of the trajectory shape, the proactive obstacle avoidance strategy is not suitable. Therefore, this thesis utilizes the characteristic of the time scale constant in dynamic movement primitives to adjust the system convergence speed, inspired by the concept of time dilation in the theory of relativity. The system slows down its convergence speed under the influence of a virtual gravitational field when approaching obstacles. Once the obstacles are automatically removed or manually cleared, the system resumes its original trajectory to complete the task. This is the second collision avoidance strategy proposed in this thesis, "Time Dilation Based Time Scale Adjustment Approach." Finally, through the simulation and experimental scenarios designed in this thesis, the experimental results for both static and dynamic obstacles demonstrate the effectiveness of the proposed algorithms.
[1]2023/2024產業技術白皮書,經濟部技術處,2023
[2]“工業機器人:市場佔有率分析、產業趨勢/統計、成長預測(2024-2029),日商環球訊息有限公司(GII)”,Accessed: May 30, 2024. [Online]. Available:https://www.gii.tw/report/moi1432445-industrial-robotics-market-share-analysis-industry.html
[3]“多元應用場景 機器人產業方興未艾.”,Accessed: May 30, 2024 [Online].Available:https://www.trademag.org.tw/page/itemsd/?id=7901371&no=19
[4]“廣明旗下達明機器人TM AI Cobot 亮相自動化工業大展,經濟日報.”,Accessed: May 30, 2024.
[5]R. Newbury, M. Gu, L. Chumbley, A. Mousavian, C. Eppner, J. Leitner, J. Bohg, A. Morales, T. Asfour, D. Kragic, D. Fox, A. Cosgun., “Deep Learning Approaches to Grasp Synthesis: A Review,” IEEE Transactions on Robotics, vol. 39, no. 5, pp. 3994–4015, Oct. 2023.
[6]L. Zheng, Y. Wang, R. Yang, S. Wu, R. Guo, and E. Dong, “An Efficiently Convergent Deep Reinforcement Learning-Based Trajectory Planning Method for Manipulators in Dynamic Environments,” J Intell Robot Syst, vol. 107, no. 4, pp. 50, Mar. 2023.
[7]H. Wang, Y. Yu, and Q. Yuan, “Application of Dijkstra Algorithm in Robot Path-Planning,” in Proc. 2011 Second International Conference on Mechanic Automation and Control Engineering, Jul. 2011, pp. 1067–1069.
[8]Y. Sun, M. Fang, and Y. Su, “AGV Path Planning based on Improved Dijkstra Algorithm,” in J. Phys.: Conf. Ser., vol. 1746, no. 012052, Jan. 2021.
[9]C. Liang, X. Zhang, Y. Watanabe, and Y. Deng, “Autonomous Collision Avoidance of Unmanned Surface Vehicles Based on Improved A Star And Minimum Course Alteration Algorithms,” Applied Ocean Research, vol. 113, no. 102755, Aug. 2021.
[10]C. Wang, L. Wang,, J. Qin, Z. Wu, L. Duan, Z. L. M. Cao, X. Ou, X. Su, W. Li, Z. Lu, M. Li, Y. Wang, J. Long, M. Huang Y. Li and Q. Wang., “Path Planning of Automated Guided Vehicles based on Improved A-Star Algorithm,” in Proc. 2015 IEEE International Conference on Information and Automation, Aug. 2015, pp. 2071–2076.
[11]S. M. LaValle and J. J. Kuffner, “Rapidly-Exploring Random Trees: Progress and Prospects” Algorithmic and Computational Robotics, New Directions, vol. 5, pp. 293–308, 2001.
[12]Muhammad Aria Rajasa Pohan, Bambang Riyanto Trilaksono, Sigit Puji Santosa, Arief Syaichu Rohman, “Path Planning Using Combined Informed Rapidly-Exploring Random Tree Star and Particle Swarm Optimization Algorithms.” IEEE Access, vol 12, pp. 56582 – 56608, 2024.
[13]I. Noreen, A. Khan, and Z. Habib, “A Comparison of RRT, RRT* and RRT*-Smart Path Planning Algorithms,” Int. J. Comput. Sci. Netw. Secur., vol. 16, no. 10, 2016.
[14]許譯云,基於深度增強式學習與B-RRT*演算法之移動機器人路徑規劃與自主導航研究,碩士論文,國立成功大學,電機工程學系,2022
[15]温梓傑,基於軌跡優化之工業型機械手臂避障研究,碩士論文,國立成功大學,電機工程學系,2023
[16]C. W. Warren, “Global Path Planning using Artificial Potential Fields,” in Proc. IEEE International Conference on Robotics and Automation, Jan. 1989, pp. 316, 317, 318, 319, 320, 321-316, 317, 318, 319, 320, 321.
[17]Z. Wu, J. Dai, B. Jiang, and H. R. Karimi, “Robot Path Planning based on Artificial Potential Field with Deterministic Annealing,” ISA Transactions, vol. 138, pp. 74–87, Jul. 2023.
[18]J. Borenstein and Y. Koren, “The Vector Field Histogram-Fast Obstacle Avoidance for Mobile Robots,” IEEE Trans. Robot. Automat., vol. 7, no. 3, pp. 278–288, Jun. 1991.
[19]I. Ulrich and J. Borenstein, “VFH*: Local Obstacle Avoidance with Look-Ahead Verification,” in Proc. IEEE International Conference on Robotics and Automation, vol. 3, Apr. 2000, pp. 2505–2511.
[20]A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control Barrier Function based Quadratic Programs with Application to Adaptive Cruise Control,” in 53rd IEEE Conference on Decision and Control, Feb. 2014, pp. 6271–6278.
[21]A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control Barrier Functions: Theory and Applications,” in Proc. 2019 18th European Control Conference (ECC), Jun. 2019, pp. 3420–3431.
[22]S. Keyumarsi, M. W. S. Atman, and A. Gusrialdi, “LiDAR-Based Online Control Barrier Function Synthesis for Safe Navigation in Unknown Environments,” IEEE Robotics and Automation Letters, vol. 9, no. 2, pp. 1043–1050, Feb. 2024.
[23]Ju-Feng Wu, Chia-Chun Huang, Ming-Yang Cheng, “DBSCAN-based Minimum Enclosing Ellipse on Control Barrier Function for Safe Navigation of Mobile Robot,”, in Proc. of The 9th International Conference on Advanced Technology Innovation, Apr 2024.
[24]H. Wang, J. Peng, F. Zhang, H. Zhang, and Y. Wang, “High-Order Control Barrier Functions-based Impedance Control of a Robotic Manipulator with Time-Varying Output Constraints,” ISA Transactions, vol. 129, pp. 361–369, Oct. 2022.
[25]X. Ding, H. Wang, Y. Ren, Y. Zheng, C. Chen, and J. He, “Online Control Barrier Function Construction for Safety-Critical Motion Control of Manipulators,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 54, no. 8, pp. 1–11, 2024.
[26]M. Saveriano, F. J. Abu-Dakka, A. Kramberger, and L. Peternel, “Dynamic Movement Primitives in Robotics: A Tutorial Survey,” The International Journal of Robotics Research, vol. 42, no. 13, pp. 1133–1184, Nov. 2023.
[27]洪瑋伶,基於動態運動原語之機械手臂軌跡命令修正研究,碩士論文,國立成功大學,電機工程學系,2023
[28]H. Hoffmann, P. Pastor, D. H. Park, and S. Schaal, “Biologically-Inspired Dynamical Systems for Movement Generation: Automatic Real-Time Goal Adaptation and Obstacle Avoidance,” in Proc. 2009 IEEE Int. Conf. Robot. Autom., May 2009, pp. 2587–2592.
[29]D.-H. Zhai, Z. Xia, H. Wu, and Y. Xia, “A Motion Planning Method for Robots Based on DMPs and Modified Obstacle-Avoiding Algorithm,” IEEE Transactions on Automation Science and Engineering, vol. 20, no. 4, pp. 2678–2688, Oct. 2023.
[30]A. Dahlin and Y. Karayiannidis, “Adaptive Trajectory Generation Under Velocity Constraints Using Dynamical Movement Primitives,” IEEE Control Systems Letters, vol. 4, no. 2, pp. 438–443, Apr. 2020.
[31]A. Dahlin and Y. Karayiannidis, “Temporal Coupling of Dynamical Movement Primitives for Constrained Velocities and Accelerations,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2233–2239, Apr. 2021.
[32]Chia-Chun Huang and Ming-Yang Cheng, “Contour Error Reduction of DMPs with Time-Dilation-Based Time Scale Adjustment,” in Proc. of IEEE 10th International Conference on Applied System Innovation., Apr 2024.
[33]F. Blanchini, “Set Invariance in Control,” Automatica, vol. 35, no. 11, pp. 1747–1767, Nov. 1999.
[34]H. K. Khalil, Nonlinear Systems. (Third Edition), Prentice Hall: Englewood Cliffs, NJ, 2002.
[35]R. A. Freeman and J. A. Primbs, “Control Lyapunov Functions: New Ideas from an Old Source,” in Proc. of 35th IEEE Conference on Decision and Control, Feb. 1996, pp. 3926–3931 .
[36]A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly Exponentially Stabilizing Control Lyapunov Functions and Hybrid Zero Dynamics,” IEEE Transactions on Automatic Control, vol. 59, no. 4, pp. 876–891, Apr. 2014.
[37]A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control Barrier Function Based Quadratic Programs for Safety Critical Systems,” IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, Aug. 2017.
[38]X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of Control Barrier Functions for Safety Critical Control,” IFAC-PapersOnLine, vol. 48, no. 27, pp. 54–61, Jan. 2015.
[39]A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, Feb. 2013.
[40]M. Ginesi, N. Sansonetto, and P. Fiorini, “Overcoming Some Drawbacks of Dynamic Movement Primitives,” Robotics and Autonomous Systems, vol. 144, pp. 1–16, Oct. 2021.
[41]J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. of International Conference on Neural Networks, vol. 4, Jan. 1995, pp. 1942–1948.
[42]K. Tracy, T. A. Howell, and Z. Manchester, “Differentiable Collision Detection for a Set of Convex Primitives,” in Proc. IEEE International Conference on Robotics and Automation (ICRA), May 2023, pp. 3663–3670.
[43]B. Dai, R. Khorrambakht, P. Krishnamurthy, V. Gonçalves, A. Tzes, and F. Khorrami, “Safe Navigation and Obstacle Avoidance Using Differentiable Optimization Based Control Barrier Functions,” IEEE Robotics and Automation Letters, vol. 8, no. 9, pp. 5376–5383, Sep. 2023.
[44]W. S. P. Fernando, L. Udawatta, and P. Pathirana, “Identification of moving Obstacles with Pyramidal Lucas Kanade Optical Flow and K-means Clustering,” in Proc. Third International Conference on Information and Automation for Sustainability, Feb. 2007, pp. 111–117.
[45]D. C. Hernández, V.-D. Hoang, and K.-H. Jo, “Laser based Obstacle Avoidance Strategy for Autonomous Robot Navigation using DBSCAN for Versatile Distance,” in Proc. 7th International Conference on Human System Interactions (HSI), Jun. 2014, pp. 112–117.