| 研究生: |
羅睿永 Lo, Jui-Yung |
|---|---|
| 論文名稱: |
915MHz微波電漿化學氣相沉積大面積鑽石薄膜及其特性 Deposition and Characterization of Large-area Diamond films by 915MHz Microwave Plasma Enhanced Chemical Vapor Deposition |
| 指導教授: |
曾永華
Tzeng, Yon-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 微波電漿化學氣相沉積 、大面積沉積 、超奈米鑽石薄膜 、微米鑽石薄膜 |
| 外文關鍵詞: | MPCVD, large area deposition, UNCD, MCD |
| 相關次數: | 點閱:182 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鑽石具備有許多優異的性質,如高硬度、高熱傳導率、耐腐蝕、抗輻射、化學惰性等性質,可以應用在光電元件、生物科技、機械、航空等領域;而在本研究中,為了要在矽基板上沉積鑽石薄膜,在較高溫度與壓力的環境之下,利用微波電漿化學氣相沉積的方式來進行鍍膜。在實驗當中使用甲烷(0.3 - 0.4 sccm)、氫氣(0 - 2 sccm)及氬氣(85 sccm)的混合氣體作為沉積超奈米鑽石薄膜的氣源,此薄膜會較沒有加入氫氣的超奈米鑽石薄膜更為平坦,其表面粗糙度直達10 nm左右,而電阻率也會達到109 - 1010 ohm*cm,接著利用甲烷(0.5 - 1 sccm)及氫氣(99 sccm)的氣體混合作為中間層薄膜的氣源,沉積出較大晶粒的微米鑽石薄膜,故依上述參數製作出微米/超奈米鑽石薄膜之結構,以達到較沉積於矽基板更緻密之微米鑽石薄膜,可避免微米鑽石薄膜之缺陷(pinhole)會造成漏電和降低電阻率,且微米鑽石薄膜本身是以富含氫氣之電漿而沉積成鑽石薄膜,因此會造成表面氫處理,而增加導電特性,故在附加超奈米鑽石薄膜來包覆住微米鑽石薄膜,並以富含氬氣之電漿與高溫之製程,對表面作除去氫鍵之功效,以達到微米鑽石薄膜具有高電阻、低漏電之特性。
Diamond has many unique properties such as the hardest natural material, high thermal conductivity, anti-corrosion, resistant against radiation and chemical inactive reaction. It has wide applications in photoelectric device, bio-technology, mechanics, and aviation engineering. Diamond films were deposited using the microwave plasma chemical vapor deposition (MPCVD) technique on silicon substrate. Hydrogen gas of various flow rates (0 - 2 sccm) was added to the gas mixture of methane (0.3 – 0.4 sccm) and Argon (85 sccm) for diamond deposition. UNCD films with hydrogen display flatter surface then without hydrogen, with a roughness of approximately 10 nm. The resistivity of UNCD films is 109 - 1010 ohm-cm. MCD films are deposited using methane (0.5 - 1 sccm) and hydrogen (99 sccm) gas mixture. We first deposit a compact UNCD film on a silicon substrated seeded with diamond nanoparticles. This layer is to avoid pinholes in the subsequent deposition of MCD films. After deposition of MCD on UNCD, we deposit the top-layer UNCD film using Argon-rich plasma to remove hydrogen in MCD and encapsulate the multi-layer diamond film so as to maintain its high resistivity while allowing MCD as part of the diamond film. MCD has a higher thermal conductivity than UNCD due to its much larger grain sizes and lower density of grain boundaries. The composite film provides both high electrical resistivity and a better thermal conductivity than UNCD alone of the same total thickness.
[1] C. Koughia, S. Kasap, and P. Capper, Springer Handbook of Electronic and Photonic Materials: Springer-Verlag New York, Inc., 2007.
[2] R. Kohl, C. Wild, N. Herres, P. Koidl, B. R. Stoner, and J. T. Glass, "Oriented Nucleation and Growth of Diamond Films on Beta-Sic and Si," Applied Physics Letters, vol. 63, pp. 1792-1794, Sep 27 1993.
[3] C. L. Jia, K. Urban, and J. X, "Heteroepitaxial Diamond Films on Silicon(001) - Interface Structure and Crystallographic Relations between Film and Substrate," Physical Review B, vol. 52, pp. 5164-5171, Aug 15 1995.
[4] 戴达煌 and 周克崧, 金刚石薄膜沉积制备工艺与应用/21 世纪新材料科学与技术丛书: 冶金工业出版社, 2001.
[5] P. W. May, H. Y. Tsai, W. N. Wang, and J. A. Smith, "Deposition of CVD diamond onto GaN," Diamond and Related Materials, vol. 15, pp. 526-530, Apr-Aug 2006.
[6] X. L. Li, J. Perkins, R. Collazo, R. J. Nemanich, and Z. Sitar, "Investigation of the effect of the total pressure and methane concentration on the growth rate and quality of diamond thin films grown by MPCVD," Diamond and Related Materials, vol. 15, pp. 1784-1788, Nov-Dec 2006.
[7] J. K. Yan and L. Chang, "Chemical vapour deposition of oriented diamond nanocrystallites by a bias-enhanced nucleation method," Nanotechnology, vol. 17, pp. 5544-5548, Nov 28 2006.
[8] Q. H. Fan, A. Fernandes, E. Pereira, and J. Gracio, "Evaluation of adhesion of diamond coating by thermal quench method," Journal of Applied Physics, vol. 83, pp. 5588-5590, May 15 1998.
[9] N. Mizuochi, J. Isoya, J. Niitsuma, T. Sekiguchi, H. Watanabe, H. Kato, T. Makino, H. Okushi, and S. Yamasaki, "Isotope effects between hydrogen and deuterium microwave plasmas on chemical vapor deposition homoepitaxial diamond growth," Journal of Applied Physics, vol. 101, May 15 2007.
[10] X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, "Low temperature growth of ultrananocrystalline diamond," Journal of Applied Physics, vol. 96, pp. 2232-2239, Aug 15 2004.
[11] S. S. Zuo, Microwave Plasma-Assisted Cvd Polycrystalline Diamond Films Deposition at Higher Pressure Conditions: BiblioBazaar, 2011.
[12] T. J. Valentine, A. J. Whitehead, R. S. Sussmann, C. J. H. Wort, and G. A. Scarsbrook, "Mechanical Property Measurements of Bulk Polycrystalline Cvd Diamond," Diamond and Related Materials, vol. 3, pp. 1168-1172, Aug 1994.
[13] A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, and M. Q. Ding, "Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices," Diamond and Related Materials, vol. 10, pp. 1952-1961, Nov 2001.
[14] D. M. Gruen, "Nanocrystalline diamond films," Annual Review of Materials Science, vol. 29, pp. 211-259, 1999.
[15] Y. K. Liu, Y. Tzeng, C. Liu, P. Tso, and I. N. Lin, "Growth of microcrystalline and nanocrystalline diamond films by microwave plasmas in a gas mixture of 1% methane/5% hydrogen/94% argon," Diamond and Related Materials, vol. 13, pp. 1859-1864, Oct 2004.
[16] A. J. Neves, M. H. Nazaré, I. E. Group, and I. o. E. Engineers, Properties, growth and applications of diamond: Institution of Electrical Engineers, 2001.
[17] 余樹楨, "人造鑽石," 科學發展, vol. 409, pp. 66-71, 2007.
[18] http://www.bud.org.tw/answer/0003/000330.htm.
[19] W. L. Liu, M. Shamsa, I. Calizo, A. A. Balandin, V. Ralchenko, A. Popovich, and A. Saveliev, "Thermal conduction in nanocrystalline diamond films: Effects of the grain boundary scattering and nitrogen doping," Applied Physics Letters, vol. 89, Oct 23 2006.
[20] R. Tavangar, J. M. Molina, and L. Weber, "Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast," Scripta Materialia, vol. 56, pp. 357-360, Mar 2007.
[21] R. H. Fowler and L. Nordheim, "Electron Emission in Intense Electric Fields," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 119, pp. 173-181, 1928.
[22] L. W. Nordheim, "On the Kinetic Method in the New Statistics and Its Application in the Electron Theory of Conductivity," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 119, pp. 689-698, 1928.
[23] D. A. Buck and K. R. Shoulders, "An approach to microminiature printed systems," presented at the Papers and discussions presented at the December 3-5, 1958, eastern joint computer conference: Modern computers: objectives, designs, applications, Philadelphia, Pennsylvania, 1958.
[24] C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, "Physical properties of thin-film field emission cathodes with molybdenum cones," Journal of Applied Physics, vol. 47, pp. 5248-5263, 1976.
[25] M. W. Geis, N. N. Efremow, J. D. Woodhouse, M. D. Mcaleese, M. Marchywka, D. G. Socker, and J. F. Hochedez, "Diamond Cold-Cathode," Ieee Electron Device Letters, vol. 12, pp. 456-459, Aug 1991.
[26] V. Raiko, R. Spitzl, B. Aschermann, D. Theirich, J. Engemann, N. Pupeter, T. Habermann, and G. Muller, "Field emission observations from CVD diamond-coated silicon emitters," Thin Solid Films, vol. 290, pp. 190-195, Dec 15 1996.
[27] A. V. Okotrub, L. G. Bulusheva, A. V. Gusel'nikov, V. L. Kuznetsov, and Y. V. Butenko, "Field emission from products of nanodiamond annealing," Carbon, vol. 42, pp. 1099-1102, 2004.
[28] K. Subramanian, W. P. Kang, J. L. Davidson, R. S. Takalkar, B. K. Choi, M. Howell, and D. V. Kerns, "Enhanced electron field emission from micropatterned pyramidal diamond tips incorporating CH4/H-2/N-2 plasma-deposited nanodiamond," Diamond and Related Materials, vol. 15, pp. 1126-1131, Apr-Aug 2006.
[29] S. Chowdhury, E. de Barra, and M. T. Laugier, "Hardness measurement of CVD diamond coatings on SiC substrates," Surface & Coatings Technology, vol. 193, pp. 200-205, Apr 1 2005.
[30] J. Stotter, Y. Show, S. H. Wang, and G. Swain, "Comparison of the electrical, optical, and electrochemical properties of diamond and indium tin oxide thin-film electrodes," Chemistry of Materials, vol. 17, pp. 4880-4888, Sep 20 2005.
[31] 謝承聿, 張廷瑜, 蔡宏營, 王良德, and 藍春發, "CVD 鑽石添加氮氣效應研究現況," 機械工業, vol. 269, pp. 21-29, 2005.
[32] 葉文挺, "類鑽鍍膜參數對介面的影響," 國立台北科技大學材料及資源工程系碩士班論文, vol. 1, pp. 1-90, 2001.
[33] W. G. Eversoie, "Synthesis of diamond," USA Patent, 1962.
[34] K. E. Spear, J. P. Dismukes, and E. Society, Synthetic diamond: emerging CVD science and technology: Wiley, 1994.
[35] H. Liu and D. S. Dandy, Diamond Chemical Vapor Deposition: Nucleation and Early Growth Stages: Noyes Publications, 1995.
[36] S. Matsumoto, Y. Sato, M. Kamo, and N. Setaka, "Vapor-Deposition of Diamond Particles from Methane," Japanese Journal of Applied Physics Part 2-Letters, vol. 21, pp. L183-L185, 1982.
[37] W. J. Zhang and X. Jiang, "The contribution of H+ ion etching during the initial deposition stage to the orientation grade of diamond films," Thin Solid Films, vol. 348, pp. 84-89, Jul 6 1999.
[38] S. Matsumoto, Y. Sato, M. Tsutsumi, and N. Setaka, "Growth of Diamond Particles from Methane-Hydrogen Gas," Journal of Materials Science, vol. 17, pp. 3106-3112, 1982.
[39] P. W. May, "Diamond thin films: a 21st-century material," Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 358, pp. 473-495, January 15, 2000 2000.
[40] X. Jiang, M. Fryda, and C. L. Jia, "High quality heteroepitaxial diamond films on silicon: recent progresses," Diamond and Related Materials, vol. 9, pp. 1640-1645, Sep-Oct 2000.
[41] L. Chang, C. J. Chen, F. R. Chen, S. F. Hu, and T. S. Lin, "The effect of substrate position on the orientation and interfacial reaction of epitaxial diamond on silicon," Diamond and Related Materials, vol. 5, pp. 326-331, Apr 1996.
[42] X. Jiang and C. L. Jia, "Direct local epitaxy of diamond on Si(100) and surface-roughening-induced crystal misorientation," Physical Review Letters, vol. 84, pp. 3658-3661, Apr 17 2000.
[43] 戴明鳳, "漫談鑽石薄膜," 真空科技, vol. 6, pp. 5-18, 1993.
[44] E. Anger, A. Gicquel, Z. Z. Wang, and M. F. Ravet, "Chemical and Morphological Modifications of Silicon-Wafers Treated by Ultrasonic Impacts of Powders - Consequences on Diamond Nucleation," Diamond and Related Materials, vol. 4, pp. 759-764, May 1 1995.
[45] C. Tang and D. C. Ingram, "The Effect of Ultrasonic Pretreatment on Nucleation Density of Chemical-Vapor-Deposition Diamond," Journal of Applied Physics, vol. 78, pp. 5745-5749, Nov 1 1995.
[46] K. O. Schweitz, R. B. SchouJensen, and S. S. Eskildsen, "Ultrasonic pre-treatment for enhanced diamond nucleation," Diamond and Related Materials, vol. 5, pp. 206-210, Apr 1996.
[47] Y. Chakk, R. Brener, and A. Hoffman, "Enhancement of Diamond Nucleation by Ultrasonic Substrate Abrasion with a Mixture of Metal and Diamond Particles," Applied Physics Letters, vol. 66, pp. 2819-2821, May 22 1995.
[48] Y. Chakk, R. Brener, and A. Hoffman, "Mechanism of diamond formation on substrates abraded with a mixture of diamond and metal powders," Diamond and Related Materials, vol. 5, pp. 286-291, Apr 1996.
[49] Y. Chakk, M. Folman, and A. Hoffman, "Kinetics of the initial stages of CVD diamond growth on non-diamond substrates: Surface catalytic effects and homoepitaxy," Diamond and Related Materials, vol. 6, pp. 681-686, Apr 1997.
[50] S. J. Harris, "Mechanism for Diamond Growth from Methyl Radicals," Applied Physics Letters, vol. 56, pp. 2298-2300, Jun 4 1990.
[51] F. G. Celii and J. E. Butler, "Direct Monitoring of Ch3 in a Filament-Assisted Diamond Chemical Vapor-Deposition Reactor," Journal of Applied Physics, vol. 71, pp. 2877-2883, Mar 15 1992.
[52] S. Yugo, T. Kanai, T. Kimura, and T. Muto, "Generation of Diamond Nuclei by Electric-Field in Plasma Chemical Vapor-Deposition," Applied Physics Letters, vol. 58, pp. 1036-1038, Mar 11 1991.
[53] M. Katoh, M. Aoki, and H. Kawarada, "Plasma-Enhanced Diamond Nucleation on Si," Japanese Journal of Applied Physics, vol. 33, pp. L194-L196, 1994.
[54] Y. C. Lee, S. J. Lin, D. Pradhan, and I. N. Lin, "Improvement on the growth of ultrananocrystalline diamond by using pre-nucleation technique," Diamond and Related Materials, vol. 15, pp. 353-356, Feb-Mar 2006.
[55] S. T. Lee, H. Y. Peng, X. T. Zhou, N. Wang, C. S. Lee, I. Bello, and Y. Lifshitz, "A nucleation site and mechanism leading to epitaxial growth of diamond films," Science, vol. 287, pp. 104-106, Jan 7 2000.
[56] Q. H. Fan, A. Fernandes, E. Pereira, and J. Gracio, "Adherent diamond coating on copper using an interlayer," Vacuum, vol. 52, pp. 193-198, Jan 1999.
[57] V. I. Konov, A. A. Smolin, V. G. Ralchenko, S. M. Pimenov, E. D. Obraztsova, E. N. Loubnin, S. M. Metev, and G. Sepold, "Dc-Arc Plasma Deposition of Smooth Nanocrystalline Diamond Films," Diamond and Related Materials, vol. 4, pp. 1073-1078, Jun 1995.
[58] T. S. Yang, J. Y. Lai, C. L. Cheng, and M. S. Wong, "Growth of faceted, ballas-like and nanocrystalline diamond films deposited in CH4/H-2/Ar MPCVD," Diamond and Related Materials, vol. 10, pp. 2161-2166, Dec 2001.
[59] K. H. Wu, E. G. Wang, Z. X. Cao, Z. L. Wang, and X. Jiang, "Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films," Journal of Applied Physics, vol. 88, pp. 2967-2974, Sep 1 2000.
[60] D. Zhou, A. R. Krauss, L. C. Qin, T. G. McCauley, D. M. Gruen, T. D. Corrigan, R. P. H. Chang, and H. Gnaser, "Synthesis and electron field emission of nanocrystalline diamond thin films grown from N-2/CH4 microwave plasmas," Journal of Applied Physics, vol. 82, pp. 4546-4550, Nov 1 1997.
[61] Y. C. Lee, S. J. Lin, C. Y. Lin, M. C. Yip, W. L. Fang, and I. N. Lin, "Pre-nucleation techniques for enhancing nucleation density and adhesion of low temperature deposited ultra-nanocrystalline diamond," Diamond and Related Materials, vol. 15, pp. 2046-2050, Nov-Dec 2006.
[62] 廖駿偉, 蕭祝螽, and 陳蔚宗, "OES技術於電漿製程監測之應用," 奈米平台技術特刊, vol. 213, pp. 171-176, 2004.
[63] www.oceanoptics.com/products/usb4000.asp.
[64] 莫定山, "拉曼光譜原理及應用," 崑山科技大學電子工程系教材, vol. 1, pp. 1-20, 2006.
[65] http://www.knvs.tp.edu.tw/AFM/ch4.htm.
[66] http://en.wikipedia.org/wiki/Scanning_electron_microscope.