研究生: |
陳文瑋 Chen, Wen-Wei |
---|---|
論文名稱: |
應用於快速動態響應降壓轉換器之適應性導通時間控制電路 Adaptive On-Time Control Circuits for Buck Converter with Quick Dynamic Response |
指導教授: |
陳建富
Chen, Jiann-Fuh |
共同指導教授: |
梁從主
Liang, Tsorng-Juu |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 80 |
中文關鍵詞: | 適應性導通時間控制 、快速動態響應電路 、負載暫態響應 、本位適應性電壓定位設計 、電壓調節器 、虛擬電感電流 |
外文關鍵詞: | adaptive on-time control circuit, quick dynamic response, load transient response, adaptive voltage positioning, voltage regulators, virtual inductor current |
相關次數: | 點閱:122 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出並探討具有快速動態響應降壓轉換器之適應性導通時間控制電路。適應性導通時間控制電路因操作在輕載時,可以有效降低切換損失而被廣泛使用來優化輕載效率。近幾年來,電源轉換器已具有快速動態響應之趨勢,因為透過改善負載暫態響應而可以減少輸出電容之使用,特別是對於中央處理單元與具有高電流變化率之應用。本論文主要的貢獻於快速動態響應電路之開發與分析,並可被應用在具有虛擬電感電流漣波控制於固定頻率導通時間控制之降壓轉換器、具有本位適應性電壓定位設計於固定電流漣波導通時間控制之電壓調節器。本文提出快速動態響應電路之操作概念,主要使用高頻回授控制電路去濾出在負載暫態時下的輸出電壓,並進而快速動態改變其導通時間的寬度大小,所以其不只可以防止輸出電壓在輕載轉換成重載而快速下降,更能縮短輸出電壓在重載轉換成輕載之穩態時間。
經由實驗與模擬結果之驗證,本論文提出應用於快速動態響應降壓轉換器之適應性導通時間控制電路,除了有效降低輸出電容的成本與大小之外,更可以改善負載暫態響應。
This dissertation presents and studies the adaptive on-time control circuits for buck converter with quick dynamic response. The adaptive on-time control circuits for buck converter are widely used for the improvement of light-load efficiency because it can reduce switching loss at light load condition. In recent years, switching power supply requirement has the trend of fast transient response, because it can improve load transient response to reduce output capacitance, especially to central processing unit (CPU) and high current slew rate load applications. The main contributions of the dissertation are the development and analysis of the quick dynamic response of the ripple-based constant frequency on-time control circuit with virtual inductor current ripple for buck converter, the constant frequency on-time control circuit for buck converter, and constant current ripple on-time control circuit with native adaptive voltage positioning (AVP) design for voltage regulators (VRs). The concept of operation uses the high frequency feedback control to filter VOUT at the load transient and change the on-time width dynamically. It not only prevents VOUT from dropping significantly at the droop, but also reduces the settling time at the load transient compared to the control without quick response.
Both experimental and simulation results confirm that the proposed adaptive on-time control circuits for buck converter with quick dynamic response can reduce the cost and size of the output capacitance and improve load transient response.
REFERENCES
[1] W. W. Chen, J. F. Chen, T. J. Liang, L. C. Wei, and W. Y. Ting, “Designing a dynamic ramp with an invariant inductor in current-mode control for an on-chip Buck converter,” IEEE Trans. on Power Electron., vol. 29, no. 2, pp. 750-758, Feb. 2014.
[2] W. W. Chen, J. F. Chen, T. J. Liang, L. C. Wei, and W. Y. Ting, “Dynamic Ramp with the invariant inductor in current-mode control for Buck converter,” in Proc. IEEE APEC, 2013, pp. 1244-1249.
[3] R. B. Ridley, “A new continuous-time model for current-mode control with constant on-time, constant off-time, and discontinuous conduction mode,” in Proc. IEEE PESC, 1990, pp. 382-389.
[4] J. Li and F. C. Lee, “New modeling approach and equivalent circuit representation for current-mode control,” IEEE Trans. on Power Electron., pp. 1218-1230, May 2010.
[5] R. W. Erickson and D. Maksimovic, “Fundamentals of power electronics,” Norwell, MA, Kluwer, 2001.
[6] R. D. Middlebrook and S. Cuk, “A general unified approach to modeling switching-converter power states,” in Proc. IEEE PESC, 1976, pp. 73-86.
[7] N. Mohan, W. P. Robbins, P. Imbertson, T. M. Undeland, R. C. Panaitescu, A. K. Jain, P. Jose, and T. Begalke, “Restructuring of first courses in power electronics and electric drives that integrates digital control,” IEEE Trans. on Power Electron., vol. 18, pp. 429-437, 2003.
[8] N. Mohan, “Power electronics circuits: An overview,” in Proc. IEEE IECON, 1988, pp. 522-527.
[9] W. H. Ki, “Signal flow graph in loop gain analysis of dc-dc PWM CCM siwtching converters,” IEEE Trans. on Circuits and System-I, no. 6, pp. 644-654, June 1998.
[10] W. H. Ki, “Analysis of subharmonic oscillation of fixed-frequency current-programming switch mode power converters,” IEEE Trans. on Circuits and System-I, vol. 45, no. 1, pp. 104-108, Jan. 1998
[11] J. Li, “Current-mode control: modeling and its digital application” PHD thesis, Virginia Polytechnic Institute and State University, 2009.
[12] R. B. Ridley, “A new, continuous-time model for current-mode control,” IEEE Trans. on Power Electron., vol. 6, pp. 271-280, Apr. 1991.
[13] F. Tian, S. Kasemsan, and I. Batarseh, “An adaptive slope compensation for the single-stage inverter with peak current-mode control,” IEEE Trans. on Power Electron., pp. 2857-2862, Oct. 2011.
[14] Z. Zansky, “Current-mode converter with controlled slope compensation,” United States Patent, Patent Number: 4,837,495, Date of Patent: June 6, 1989.
[15] L. Yanming, L. Xinquan, C. Fuji, Y. Bing, and J. Xinzhang, “An adaptive slope compensation circuit for buck DC-DC converter,” in Proc. ASICON, pp. 608-611, Oct. 2007.
[16] Richtek Tech. Corp., “2A, 22V, 400 kHz step-down converter,” RT8267 Datasheet, 2011.
[17] Richtek Tech. Corp., “2A, 23V, 340 kHz synchronous step-down converter,” RT8294 Datasheet, 2011.
[18] W. W. Chen, J. F. Chen, T. J. Liang, L. C. Wei, J. R. Huang, and W. Y. Ting, “A novel quick response of RBCOT with VIC ripple for buck converter,” IEEE Trans. on Power Electron., vol. 28, pp. 4299-4308, Sept. 2013.
[19] W. W. Chen, J. F. Chen, T. J. Liang, J. R. Huang, L. C. Wei, and W. Y. Ting, “Implementing dynamic quick response with high-frequency feedback control of the deformable constant on-time control for buck converter on-chip,” IET Power Electron., vol.6, no. 4, pp. 383-391, Feb. 2013.
[20] W. W. Chen, J. F. Chen, T. J. Liang, S. F. Hsiao, J. R. Huang, and W. Y. Ting, “Improved transient response using HFFC circuit of the CCRCOT with native AVP design for voltage regulators,” IET Power Electron., vol. 6, pp. 1948-1955, Nov. 2013.
[21] W. W. Chen, J. F. Chen, T. J. Liang, J. R. Huang, and W. Y. Ting, “Improved transient response using HFFC in current-mode CFCOT control for buck converter,” in Proc. IEEE PEDS, 2013, pp. 546-549.
[22] C. J. Chen, D. Chen, C. W. Tseng, C. T. Tseng, Y. W. Chang, and K. C. Wang, “A novel ripple-based constant on-time control with virtual inductor current ripple for buck converter with ceramic output capacitors,” in Proc. IEEE APEC, 2011, pp. 1244-1250.
[23] R. Redl and J. Sun, “Ripple-based control of switching regulators an overview,” IEEE Trans. on Power Electron., vol. 24, pp. 2669-2680, 2009.
[24] J. Sun, “Characterization and performance comparison of ripple-based control for voltage regulator modules,” IEEE Trans. on Power Electron., vol. 21, pp. 346-353, 2006.
[25] W. Huang, “A new control for multi-phase buck converter with fast transient response,” in Proc. IEEE APEC, 2001, pp. 273-279.
[26] J. Li and F. C. Lee, “Modeling of V2 current-mode control,” in Proc. IEEE APEC, 2009, pp. 298-304.
[27] Z. Yang, S. Ye, and Y. F. Liu, “A new resonant gate drive circuit for synchronous buck converter,” IEEE Trans. on Power Electron., vol. 22, no. 4, pp. 1311-1320, 2007.
[28] H. Fujita, “A resonant gate-drive circuit capable of high-frequency, and high-efficiency operation,” IEEE Trans. on Power Electron., vol. 25, no. 4, pp. 962-969, 2010.
[29] W. Eberle, Z. Zhang, Y. F. Liu, and P. C. Sen, “A practical switching loss model for buck voltage regulators,” IEEE Trans. on Power Electron., vol. 24, no. 3, pp. 700-713, 2009.
[30] Y. Ren, M. Xu, J. Zhou, and F. C. Lee, “Analytical loss model of power MOSFET,” IEEE Trans. on Power Electron., vol. 21, no. 2, 2004, pp. 310-319.
[31] X. Zhou, Z. Liang, and A. Huang, “A new resonant gate driver for switching loss reduction of high side switch in buck converter,” in Proc. IEEE APEC, 2010, pp. 1477-1481.
[32] C. Ni and T. Tetsuo, “Adaptive constant on-time (D-CAP™) control study in notebook applications,” Texas Instruments, Application report SLVA281B, July 2007.
[33] Richtek Tech. Corp., “Dual output 3-Phase + 2-Phase PWM controller for CPU and GPU Core power supply,” RT8885A Datasheet, 2012.
[34] A. V. Petershevs and S. R. Sanders, “Digital multimode buck converter control with loss-minimizing synchronous rectifier adaptation,” IEEE Trans. on Power Electron., vol. 21, no. 6, pp. 1588-1599, Nov. 2006.
[35] S. Angkititrakul and H. Hu, “Design and analysis of buck converter with pulse-skipping modulation,” in Proc. IEEE PESC, 2008, pp. 1151-1156.
[36] X. Zhou, M. Donati, L. Amoroso, and F. C. Lee, “Improved light-load efficiency for synchronous rectifier voltage regulator module,” IEEE Trans. on Power Electron., vol. 15, no. 5, pp. 826-834, Sep. 2000.
[37] C. L. Chen, W. L. Hsieh, W. J. Lai, K. H. Chen, and C. S. Wang, “A new PWM/PFM control technique for improving efficiency over wide load range,” in Proc. IEEE ICECS, Aug. 2008, pp. 962-965.
[38] S. Kapat, S. Banerjee, and A. Patra, “Discontinuous map analysis of a DC-DC converter governed by pulse skipping modulation,” IEEE Trans. on Circuits and Systems-I, vol. 57, no. 7, pp. 1793-1801, July 2010.
[39] K. D. T. Ngo, S. K. Mishra, and M. Walters, “Synthetic-ripple modulator for synchronous buck converter,” IEEE Trans. on Power Electron., vol. 3, pp. 148-151, 2005.
[40] Y. H. Lee, S. J. Wang, and K. H. Chen, “Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor,” IEEE Trans. on Power Electron., vol. 25, pp. 829-838, 2010.
[41] Y. Y. Mai and P. K. T. Mok, “A constant frequency output-ripple voltage-based buck converter without using large ESR capacitor,” IEEE Trans. on Circuits and Systems-II, vol. 55, pp. 748-752, 2008.
[42] K. Y. Cheng, F. Yu, P. Mattavelli, and F. C. Lee, “Characterization and performance comparison of digital V2-type constant on-time control for buck converters,” in Proc. IEEE COMPEL, June 2010, pp. 1-6.
[43] H. Mao, L. Yao, C. Wang, and B. I., “Analysis of inductor current sharing in nonisolated and isolated multiphase dc–dc converters,” IEEE Trans. on Industry Electron., vol. 54, no. 6, pp. 3379-3388, Dec. 2007.
[44] P. W. Lee, Y. S. Lee, D. K. W. Cheng, and X. C. Liu, “Steady-state analysis of an interleaved boost converter with coupled inductors,” IEEE Trans. on Industry Electron., vol. 47, no. 4, pp. 787-795, Aug. 2000.
[45] H. N. Nagaraja, D. Kastha, and A. Patra, “Design principles of a symmetrically coupled Inductor structure for Multiphase synchronous Buck converters,” IEEE Trans. on Industry Electron., vol. 58, no. 3, pp. 988-997, Dec. 2011.
[46] L. P. Wong, D. K. W. Cheng, M. H. L. Chow, and Y. S. Lee, “Interleaved three-phase forward converter using integrated transformer,” IEEE Trans. on Industry Electron., vol. 52, no. 5, pp. 1246-1260, Oct. 2005.
[47] J. Abu-Qahouq, H. Mao, and I. Batarseh, “Multiphase voltage-mode hysteretic controlled dc–dc converter with novel current sharing,” IEEE Trans. on Power Electron., vol. 19, no. 6, pp. 1397-1407, Nov. 2004.
[48] J. R. Huang, C. H. Wang, C. J. Lee, K. L. Tseng, and D. Chen, “Native AVP control method for constant output impedance of DC power converters,” in Proc. IEEE PESC, 2007, pp. 2023-2028.
[49] A. Waizman and C. Y. Chung, “Resonant free power network design using extended adaptive voltage positioning (EAVP) methodology,” IEEE Trans. on Advanced Packaging, vol. 24, pp. 236-244, Aug. 2001.
[50] M. Lee, D. Chen, K. Huang, E. Tseng, and B. Tai, “Compensator design for adaptive voltage position (AVP) for multiphase VRMs,” in Proc. IEEE PESC, 2006, pp. 1-7.
[51] K. Yao, Y. Meng P. Xu, and F. C. Lee, “Design considerations for VRM transient response based on the output impedance,” in Proc. IEEE APEC, 2002, pp. 14-20.
[52] Richtek Tech. Corp., “Multi-Phase PWM controller for CPU core power supply,” RT8859M Datasheet, 2014.