| 研究生: |
賴可欣 Lai, Ke-hsin |
|---|---|
| 論文名稱: |
影像基礎之上肢肌肉骨骼力學模型 An Image-based Upper Limb Musculoskeletal Model |
| 指導教授: |
蘇芳慶
Su, Fong-chin |
| 共同指導教授: |
林槐庭
Lin, Hwai-ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 腕關節 、輪椅驅動 、肌肉力學模型 、肌肉力量 、動作分析 |
| 外文關鍵詞: | Wrist, Wheelchair propulsion, Musculoskeletal model, Muscle force, Motion analysis |
| 相關次數: | 點閱:106 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去的研究,臨床和生物力學的研究人員對於發展肌肉骨骼模型展現高度興趣。在一些付費軟體之中,提供了互動式的環境並可輸出運動中肌肉的力和力矩表現。但是現有的軟體不能將動作模擬系統結合起來並對於使用者有相當的限制。在過去的文獻中,大多數學者研究推輪椅時上肢各關節之接觸力和力矩,並集中注意在肩關節肌肉力量的分析。藉由分析多關節肌肉功能的輪椅推進,而擴展從肩膀到手腕在三維空間中的關節肌肉骨骼模型,並使用肌肉在動作中施放的表面電訊號作為上肢肌肉骨骼模型的驗證。
本研究參與受試者為十位上肢曾未受過嚴重傷害之正常男性,。一台裝有訂製量測工具輪的市售輪椅以及擁有八台攝影機的動作擷取系統,用來收集運動學及動力學量測資料。本上肢關節肌肉力學模型包含三十四條肌肉,結合逆向動力學演算法和牛頓法計算平衡方程式,並用最佳化求解,目標函數為使肌肉應力平方合最小並設定限制為X、Y、Z三方向關節作用力矩等於零。
結果顯示在輪椅推進期中,屈指淺肌有較大於其他腕關節肌肉之力量。在輪椅回復期中,尺側腕屈肌、指淺屈肌和伸肌橈側腕環有較大的力量。總結而言,本研究之模型可用於分析、並調整任意肌肉之參數以及限制來探討各肌肉之交互影響,做為臨床上的應用。
For the past studies, clinical and biomechanical researchers interested in the development the musculoskeletal model. There was some of commercial software that provided the interactive source and output the data of muscle forces and moments etc the kinematic data. Nevertheless, the existing models could not combine with the motion capture system. The commercially available software still had some limitations for users. By analyzing the multi-joint muscle function during wheelchair propulsion, we extend the three-dimensional musculoskeletal model from the joint of shoulder to wrist and use EMG tests to prove the musculoskeletal model of upper limb.
Ten normal subjects participated in this study. A Quikie GP ultralight wheelchair with custom instrumental wheels and an 8-camera motion capture system were used to collect the kinetic and kinematic measurements. A musculoskeletal model of upper limb including thirty-four muscle lines was combined the inverse dynamic solution and Newtonian formulation to calculate the equilibrium equation. Muscle forces were solved by the optimization method and the objective function was to minimize the sum of squared muscle stress and set entire joint constraint moment to zero.
Results of this study showed that in propulsion phase, flexor digitorum superficialis index muscle have larger predicted muscle forces than the other wrist muscles. In recovery phase, flexor carpi ulnaris, flexor digitorum superficialis ring and extensor carpi radialis longus has larger predicted muscle force. To conclude, the present model can be used to analyze and adjusted the parameter of each muscle in upper limb or constraint to investigate the interactive of every muscle for clinical applications.
An, K. N., F. C. Hui, et al. (1981). "Muscles across the elbow joint: a biomechanical analysis." J Biomech 14(10): 659-669.
Asato, K. T., R. A. Cooper, et al. (1993). "SMARTWheels: development and testing of a system for measuring manual wheelchair propulsion dynamics." IEEE Trans Biomed Eng 40(12): 1320-1324.
Audenaert, A. and E. Audenaert (2008). "Global optimization method for combined spherical-cylindrical wrapping in musculoskeletal upper limb modelling." Comput Methods Programs Biomed 92(1): 8-19.
Bassett, R. W., A. O. Browne, et al. (1990). "Glenohumeral muscle force and moment mechanics in a position of shoulder instability." J Biomech 23(5): 405-415.
Challis, J. H. (1995). "A procedure for determining rigid body transformation parameters." J Biomech 28(6): 733-737.
Chao, E. Y. (2003). "Graphic-based musculoskeletal model for biomechanical analyses and animation." Med Eng Phys 25(3): 201-212.
Charlton, I. W. and G. R. Johnson (2001). "Application of spherical and cylindrical wrapping algorithms in a musculoskeletal model of the upper limb." J Biomech 34(9): 1209-1216.
Dalyan, M., D. D. Cardenas, et al. (1999). "Upper extremity pain after spinal cord injury." Spinal Cord 37(3): 191-195.
Damsgaard, M., J. Rasmussen, et al. (2006). "Analysis of musculoskeletal systems in the AnyBody Modeling System." Simulation Modelling Practice and Theory 14(8): 1100-1111.
Delp, S. L., F. C. Anderson, et al. (2007). "OpenSim: open-source software to create and analyze dynamic simulations of movement." IEEE Trans Biomed Eng 54(11): 1940-1950.
Delp, S. L., A. E. Grierson, et al. (1996). "Maximum isometric moments generated by the wrist muscles in flexion-extension and radial-ulnar deviation." J Biomech 29(10): 1371-1375.
Delp, S. L. and J. P. Loan (1995). "A graphics-based software system to develop and analyze models of musculoskeletal structures." Comput Biol Med 25(1): 21-34.
Dubowsky, S. R., S. A. Sisto, et al. (2009). "Comparison of kinematics, kinetics, and EMG throughout wheelchair propulsion in able-bodied and persons with paraplegia: an integrative approach." J Biomech Eng 131(2): 021015.
Engin, A. E. and S. T. Tumer (1989). "3-Dimensional Kinematic Modeling of the Human Shoulder Complex .1. Physical Model and Determination of Joint Sinus Cones." Journal of Biomechanical Engineering-Transactions of the Asme 111(2): 107-112.
Fung, M., S. Kato, et al. (2001). "Scapular and clavicular kinematics during humeral elevation: a study with cadavers." J Shoulder Elbow Surg 10(3): 278-285.
Garner, B. A. and M. G. Pandy (2000). "musculoskeletal model of the upper limb based on the visible human male dataset." computer methods in biomechanics and biomedical engineering.
Garner, B. A. and M. G. Pandy (2000). "The Obstacle-Set Method for Representing Muscle Paths in Musculoskeletal Models." Comput Methods Biomech Biomed Engin 3(1): 1-30.
Gellman, H., I. Sie, et al. (1988). "Late complications of the weight-bearing upper extremity in the paraplegic patient." Clin Orthop Relat Res(233): 132-135.
Gonzalez, R. V., T. S. Buchanan, et al. (1997). "How muscle architecture and moment arms affect wrist flexion-extension moments." J Biomech 30(7): 705-712.
Holzbaur, K. R., W. M. Murray, et al. (2005). "A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control." Ann Biomed Eng 33(6): 829-840.
Inman, V. T., J. B. Saunders, et al. (1996). "Observations of the function of the shoulder joint. 1944." Clin Orthop Relat Res(330): 3-12.
Jacobson, M. D., R. Raab, et al. (1992). "Architectural Design of the Human Intrinsic Hand Muscles." Journal of Hand Surgery-American Volume 17A(5): 804-809.
Karlsson, D. and B. Peterson (1992). "Towards a model for force predictions in the human shoulder." J Biomech 25(2): 189-199.
Lemay, M. A. and P. E. Crago (1996). "A dynamic model for simulating movements of the elbow, forearm, an wrist." J Biomech 29(10): 1319-1330.
Li, G., K. R. Kaufman, et al. (1999). "Prediction of antagonistic muscle forces using inverse dynamic optimization during flexion extension of the knee." Journal of Biomechanical Engineering-Transactions of the Asme 121(3): 316-322.
Lieber, R. L., B. M. Fazeli, et al. (1990). "Architecture of Selected Wrist Flexor and Extensor Muscles." Journal of Hand Surgery-American Volume 15A(2): 244-250.
Lieber, R. L., M. D. Jacobson, et al. (1992). "Architecture of Selected Muscles of the Arm and Forearm - Anatomy and Implications for Tendon Transfer." Journal of Hand Surgery-American Volume 17A(5): 787-798.
Lin, H. T., Y. Nakamura, et al. (2005). "Use of virtual, interactive, musculoskeletal system (VIMS) in modeling and analysis of shoulder throwing activity." J Biomech Eng 127(3): 525-530.
Lin, H. T., F. C. Su, et al. (2004). "Muscle forces analysis in the shoulder mechanism during wheelchair propulsion." Proc Inst Mech Eng H 218(4): 213-221.
Lin, H. T., F. C. Su, et al. (2004). "Muscle forces analysis in the shoulder mechanism during wheelchair propulsion." Proc Inst Mech Eng [H] 218(4): 213-221.
Loren, G. J., S. D. Shoemaker, et al. (1996). "Human wrist motors: biomechanical design and application to tendon transfers." J Biomech 29(3): 331-342.
Maurel, W. and D. Thalmann (1999). "A Case Study on Human Upper Limb Modelling for Dynamic Simulation." Comput Methods Biomech Biomed Engin 2(1): 65-82.
Mulroy, S. J., J. K. Gronley, et al. (1996). "Electromyographic activity of shoulder muscles during wheelchair propulsion by paraplegic persons." Arch Phys Med Rehabil 77(2): 187-193.
Murray, W. M., T. S. Buchanan, et al. (2000). "The isometric functional capacity of muscles that cross the elbow." J Biomech 33(8): 943-952.
Murray, W. M., S. L. Delp, et al. (1995). "Variation of muscle moment arms with elbow and forearm position." J Biomech 28(5): 513-525.
Newsam, C. J., S. S. Rao, et al. (1999). "Three dimensional upper extremity motion during manual wheelchair propulsion in men with different levels of spinal cord injury." Gait Posture 10(3): 223-232.
Pierce, J. E. and G. Li (2005). "Muscle forces predicted using optimization methods are coordinate system dependent." J Biomech 38(4): 695-702.
Raikova, R. (1992). "A general approach for modelling and mathematical investigation of the human upper limb." J Biomech 25(8): 857-867.
Sennwald, G. R., V. Zdravkovic, et al. (1993). "Kinematics of the wrist and its ligaments." J Hand Surg Am 18(5): 805-814.
van der Helm, F. C. and H. E. Veeger (1996). "Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion." J Biomech 29(1): 39-52.
Veeger, H. E., L. A. Rozendaal, et al. (2002). "Load on the shoulder in low intensity wheelchair propulsion." Clin Biomech (Bristol, Avon) 17(3): 211-218.
Veeger, H. E., F. C. Van der Helm, et al. (1991). "Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism." J Biomech 24(7): 615-629.
Veeger, H. E. J., L. A. Rozendaal, et al. (2002). "Load on the shoulder in low intensity wheelchair propulsion." Clinical Biomechanics 17(3): 211-218.
Wang, L.-f. (2009). Elbow Muscle Force Analysis During Wheelchair Propulsion.
Winters, J. M. and D. G. Kleweno (1993). "Effect of initial upper-limb alignment on muscle contributions to isometric strength curves." J Biomech 26(2): 143-153.
Wu, H. W., L. J. Berglund, et al. (1998). "An instrumented wheel for kinetic analysis of wheelchair propulsion." J Biomech Eng 120(4): 533-535.