簡易檢索 / 詳目顯示

研究生: 郭利亞
Kuo, Li-Ya
論文名稱: 觀測/卡爾曼濾波器系統辨識法的概觀、更進一步的註釋暨其在未知時延干擾系統的應用
An Overview and Further Notes on OKID Method and Its Applications to Unknown Time-delay Systems with Disturbances
指導教授: 蔡聖鴻
Tsai, S. H. Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 77
中文關鍵詞: 時延系統分散式電網觀測/卡爾曼濾波器系統辨識法非極小相位系統等校未知雜訊估測雜訊估測器最佳化二次線性追蹤器狀態估測器
外文關鍵詞: Time delay system, distributed power grid (DPG) system, observer/Kalman filter identification (OKID), non-minimum phase systems (NMP), disturbance estimator, optimal linear quadratic tracker, state estimator, equivalent-input-disturbance (EID)
相關次數: 點閱:206下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討觀測/卡爾曼濾波器系統辨識法應用在時延系統之概觀、更進一步的註釋與適用於有未知干擾的方陣非極小相位系統之強健數位追蹤器設計。主題包含了觀測/卡爾曼濾波器系統辨識法在單輸入單輸出/多輸入多輸出時延系統之建模,和針對未知雜訊之未知方陣系統提出結合了等效未知雜訊估測所建構的強健追蹤器。首先,以特定採樣週期精確辨識未知多輸入多輸出系統之極零點圖,如此以來極小/非極小相位系統之系統特性能被辨識出來。因此,這會使設計者做出重要決定。它適用於在廣泛的採樣週期內具有一般未知多輸入多輸出系統的完整零極點映射。此外,由於識別出的模型處於無延遲形式,因此適用於任何適當選擇的無延遲的控制方法。本論文提出建構式範例用以觀察觀測/卡爾曼濾波器系統辨識法在時延系統之結果,藉由觀察之結果設計步驟過程。最後以數值範例說明所提出方法之優點

    An overview and further notes on the observer/Kalman filter identification (OKID) method with its appliactions to time-dealy systems and a robust digital tracker design for the unknown square non-minimum phase (NMP) systems with unknown disturbances have been proposed in this thesis. This includes the OKID method-based modellings of the single/multi time-delay systems and state estimator integrated with the equivalent-input-disturbance (EID) estimate robust tracker for the unknown square systems with unknown disturbances. One of the foremost applications is to precisely identify the pole-zero map of a general unknown complex multi-input multi-output (MIMO) system for any specific sampling period, so that the MP or NMP property of an unknown plant can be identified. Consequently, this may come up to an important decision for designers. It is applicable to have the complete pole-zero map of a general unknown complex MIMO system for a wide range sampling period. Moreover, due to the identified model is in the delay-free form, any appropriately selected delay-free control methodology is applicable. Numerical constructive examples are given to observe the consequence of applying OKID on time delay systems. By those observations, we can compose the proposed design procedures. And illustrative examples are given to demonstrate the superiority performance of the proposed approach.

    摘要 I Abstract II Acknowledgement III List of Contents IV List of Figures VI List of Tables IX Chapter 1 Introduction 1 Chapter 2 A Practical Distributed Power Grid (DPG) Control System 5 Chapter 3 Observer/Kalman Filter Identification 10 3.1. Basic observer equation 11 3.1.1. Markov parameter without observer 11 3.1.2. Markov parameter with observer 13 3.2. Computation of Markov parameters 15 3.2.1. System Markov parameters 15 3.2.2. Observer gain Markov parameters 16 3.3. Eigensystem realization algorithm 17 3.4. Computational steps of OKID 18 Chapter 4 OKID Method-Based Modelling of Time-Delay Systems 23 4.1. Constructive examples 24 Chapter 5 Digital Tracker Design for Known Square NMP Discrete-Time System with Matched Disturbance 48 5.1. A generalized optimal linear quadratic discrete tracker ………………………………………….49 5.2. Design the current output-based state estimator and disturbance observer 50 5.2.1. Construct a current output-based observer 51 5.2.2. Construct the estimation error dynamic equations 52 5.2.3. Perform the optimal linear quadratic observer design 53 5.2.4. Construct the artificial augmented model for servo control design 53 5.2.5. Perform the PICO-based optimal LQDT design 56 Chapter 6 Robust Tracker for Unknown Square NMP Time Delay System with Matched/Mismatched Input Disturbances 58 Chapter 7 Illustrative Examples 60 Chapter 8 Conclusion 74 Reference 75

    Reference
    [1] Anderson, B.D.O. and Moore, J.B., Optimal Control: Linear Quadratic Methods, NJ: Prentice-Hall, 1989.
    [2] Astrom, K.J., Hagander, P., and Sternby, J., “Zeros of sampled systems,” Automatica, vol. 20, no. 1, pp. 31-38, 1984.
    [3] Ebrahimzadeh, F., Tsai, J. S.-H., Liao, Y.-T., Chung, M.-C., Guo, S.-M., Shieh, L.-S., and Wang, L., “A generalized optimal linear quadratic tracker with universal applications-Part 1: Continuous-time systems,” International Journal of Systems Science, vol. 48, no. 2, pp. 376-396, 2017.
    [4] Ebrahimzadeh, F., Tsai, J. S.-H.,. Chung, M.-C, Liao, Y.-T., Guo, S.-M., Shieh, L.-S., and Wang, L., “A generalized optimal linear quadratic tracker with universal applications-Part 2: Discrete-time systems,” International Journal of Systems Science, vol. 48, no. 2, pp. 397-416, 2017.
    [5] Emami-Naeini, A. and Dooren, P.V., “Computation of zeros of linear multivariable systems,” Automatica, vol. 18, no. 4, pp. 425-430, 1982.
    [6] Ishitobi, M., and Kunimatsu, S., “Zeros of sampled-data models for time delay MIMO systems,” Proceedings of 2016 IEEE Region 10 Conference (TENCON), pp. 13410-3413, 2016.
    [7] Joshi, V. V., Xie, L. B., Park, J. J., Shieh, L. S., Chen, Y. H., Grigoriadisd, K., and Tsai, J. S. H., “Digital modeling and control of multiple time-delayed distributed power grid”, Applied Mathematical Modelling, vol. 36, pp. 4118-4134, 2012.
    [8] Juang, J. N., Applied System Identification, Englewood Cliffs, NJ: Prentice-Hall, 1994.
    [9] Latawiec, K., Banka, S., and Tokarzewski, J., “Control zeros and non-minimum phase LTI MIMO systems,” Annual Reviews in Control, vol. 24, no. 1, pp. 105-112, 2000.
    [10] Lewis, F. L., Applied Optimal Control and Estimation, NJ: Prentice-Hall, 1992.
    [11] Lewis, F.L. and Syrmos, V.L., Optimal Control, NJ: John Wiley & Sons, 1995.
    [12] Liu J., Gusrialdi, A., Obradovic, D., and Hirsche, S., “Study on the effect of time delay on the performance of distributed power grids with networked cooperative control,” Proceedings of the 1st IFAC Workshop on Estimation and Control of Networked Systems, Venice, pp. 180-185, 2009.
    [13] Tsai, J. S. H., Liao, Y.-T., Ebrahimzadeh, F., Lai, S. Y., Su, T. J., Guo, S. M., Shieh, L. S., and Tsai, T. J., “A new PI optimal linear quadratic state-estimate tracker for continuous-time non-square non-minimum phase systems,” International Journal of Systems Science, vol. 48 (7), pp. 1438-1459, 2017.
    [14] Tsai, J. S.-H., Ebrahimzadeh, F., Lin, Y.-Y., Guo, S.-M., Shieh, L.-S., Juang, Y.-T., “An efficient robust servo design for non-minimum phase discrete-time systems with unknown matched/mismatched input disturbances,” Automation, Control and Intelligent Systems, vol. 5, no. 2, pp. 14-28, 2017.
    [15] Tsai, J. S.-H., Liao, Y.-T., Lin, Z.-W., Ebrahimzadeh, F., Guo, S.-M., Shieh, L.-S., and Canelon, J.I., “A new PI-based optimal linear quadratic state-estimate tracker for discrete-time non-square non-minimum phase systems,” International Journal of Systems Science, Published online https://www.tandfonline.com/doi/abs/10.1080/00207721.2016.1261201, May 13, 2018.
    [16] Tsai, J. S.H., Su, T. J., Cheng, J. C., Lin, Y. Y., Giap, V. N., Guo, S.M., Shieh, L.S., “Robust observer-based optimal linear quadratic tracker for five-degree-of-freedom sampled-data active magnetic bearing system,” International Journal of Systems Science, vol. 49, no. 6, pp. 1273-1299, 2018.
    [17] Tsai, J. S.-H., Wang, H.-H., Guo, S.-M., Shieh, L.-S., and Canelon, J.I., “A case study on the universal compensation-improvement mechanism: A robust PID filter-shaped optimal PI tracker for systems with/without disturbances,” Journal of the Franklin Institute, vol. 355, pp. 3583-3618, April 2018.
    [18] Uren, K. and Schoor, G.V., Predictive PID control of non-minimum phase systems, Advances in PID Control Valery D. Yurkevich, IntechOpen, DOI: 10.5772/18888. Available from: https://www.intechopen.com/books/advances-in-pid-control/predictive-pid-control-of-non-minimum-phase-systems, 2011.
    [19] Wang, H. P., Tsai, J. S. H., Yi, Y. I., and Shieh, L. S., “Lifted digital redesign of observer-based tracker for sampled-data system”, International Journal of Systems Science. vol. 35, no. 4, pp. 255-271, April, 2004.
    [20] Wang, L.P., Model Predictive Control System Design and Implementation using MATLAB. London: Springer, 2009.
    [21] Wu, C. Y., Tsai, J. S. H., Guo, S. M., Shieh, L. S., Canelon, J. I., Ebrahimzadeh, F., and Wang, L., “A novel on-line observer/Kalman filter identification method and its application to input-constrained active fault-tolerant tracker design for unknown stochastic systems,” Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 352, pp. 1119-1151, 2015.
    [22] Wu, C. Y., Tsai, J. S.-H., Su, T. J., Guo, S.-M., Shieh, L.-S., and Yan, J. J., “Novel OCID method-based minimal realizations in block observable/controllable canonical forms and compensation improvement,” International Journal of Systems Science, vol. 48, no. 7, pp. 1522-1535, 2017.
    [23] Xie, L. B., Shieh, L. S. H., Wu, C. Y., Tsai, J. S. H., Canelon, J. I., and Singla, M., “Digital sliding mode controller design for multiple time-delay continuous-time transfer function matrices with a long input-output delay”, Journal of Process Control, vol. 25, pp. 78-93, Jan 2015.
    [24] Xie, L. B., Shieh, L. S., Tsai, J. S.H., Guo, S. M., and Dunn, A. C., “Digital redesign of analog smith predictor for systems with long input time delays,” Journal of the Franklin Institute, vol. 354, pp. 5797-5812, Sep. 2017.
    [25] Xie, L. B., Shieh, L.S., Tsai, J.S.H., Ebrahimzadeh, F. and Canelon, J.I., “Analog/digital PID-based sliding-mode controller design for nonlinear processes with long time delays,” Dynamics of Continuous, Discrete, and Impulse Systems: Series B Applications and Algorithms, vol. 25, pp. 1-24, 2018.
    [26] Xie, L. B., Shieh, L.S., Tsai, J.S.H., Wu, C. Y., and Part, J. J., “Digital and analog integer delayed modeling and control for multivariable systems with multiple time delays in states, inputs and outputs,” Applied Mathematical Modelling, vol. 40, pp. 1615-1633, Sep. 2016.

    下載圖示 校內:2023-07-01公開
    校外:2023-07-01公開
    QR CODE