| 研究生: |
賴景明 Lai, Ching-Ming |
|---|---|
| 論文名稱: |
應用四線圈式多環同軸型感應耦合結構於大間隙無線電能傳輸系統之研究 Study on Large Air-Gap Wireless Power Transfer System with Four-coil Multi-ring Coaxial Type Inductive Coupled Structure |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 非接觸式 、多環同軸型 、感應耦合結構 |
| 外文關鍵詞: | wireless, multi-ring coaxial type, inductive coupled structure |
| 相關次數: | 點閱:88 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研究四線圈式多環同軸型感應耦合結構,並將其應用於大間隙無線電能傳輸系統。文中首先針對常見之大間隙用感應耦合結構進行模擬與分析,探討適用於大間隙無線電能傳輸之感應耦合結構,藉以提出本文之多環同軸型感應耦合結構。此外,為了提升系統電能傳輸效率,本文採用四線圈式感應耦合架構。而系統中運用電流感測電路偵測初級側諧振槽電流,並經由鎖相迴路調整系統之操作頻率,使其維持於初級側諧振頻率之上,達到初級側諧振頻率追蹤機制。最後,實驗結果顯示在間隙1公尺之下,最高電能傳輸能力為128瓦特,整體系統傳輸效率約為22.45%。
This thesis is to study the four-coil multi-ring coaxial type inductive coupled structure for wireless power transfer system. Firstly, different forms of coupling structures are simulated and analyzed, so as to propose multi-ring coaxial type inductive coupled structure applied in wireless power transfer system. Furthermore, in order to improve the power transmission efficiency, the strongly coupled magnetic resonances are chosen. The system uses current sensor to detect primary inductance current, and utilizes Phase-Locked Loop (PLL) to modulate operation frequency of system maintain on primary resonant frequency, thus achieve resonant frequency tracking mechanism. Finally, experimental results show that the highest power of load is 128 watts through 1 meter air gap, and the power transmission efficiency of the system is about 22.45%
[1] Y. You, B. H. Soong, S. Ramachandran, and W. Liu, “Palm size charging platform with uniform wireless power transfer,” in Proc. Int. Conf. Control Automation Robotics and Vision, 2010, pp. 85-89.
[2] P. Raval, D. Kacprzak, and A. P. Hu, “A wireless power transfer system for low power electronics charging applications,” in Proc. IEEE Conf. Industrial Electronics and Applications, 2011, pp. 520-525.
[3] H. Y. Shen, J. Y. Lee, and T. W. Chang, “Study of contactless inductive charging platform with core array structure for portable products,” in Proc. IEEE Int. Conf. Consumer Electronics, Communications and Networks, 2011, pp. 756-759.
[4] J. Y. Lee, H. Y. Shen, and T. L. Wan, “Contactless inductive charging system with hysteresis loop control for small-sized household electrical appliances,” in Proc. IEEE APEC, 2012, pp. 2172-2178.
[5] K. Hatanaka, F. Sato, H. Matsuki, S. Kikuchi, J. Murakami, M. Kawase, and T. Satoh, “Power transmission of a disk with a cord-free power supply,” IEEE Trans. Magn., vol. 5, no. 1, pp. 3329-3331, Jan. 2002.
[6] X. Liu and S. Y. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, Jan. 2007.
[7] M. L. G. Kissin, H. Hao, and G. A. Covic, “A practical multiphase IPT system for AGV and roadway applications,” in Proc. IEEE Energy Conversion Congress and Exposition, 2010, pp. 1844-1850.
[8] J. A. Taylor, Z. N. Low, J. Casanova, and J. Lin, “A wireless power station for laptop computers,” in Proc. IEEE Radio and Wireless Symposium, 2010, pp. 625-628.
[9] T. Yazaki, I. Morita, and H. Tanaka, “Demonstration of optical wireless USB 2.0 system with wireless power transfer,” in Proc. IEEE ICCE, 2011, pp. 11-12.
[10] J. Achterberg, E. A. Lomonova, and J. de Boeij, “Coil array structures compared for contactless battery charging platform,” IEEE Trans. Magn., vol. 44, no. 5, pp. 617-622, 2008.
[11] S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, May 2005.
[12] D. V. Wageningen and T. Staring, “The Qi wireless power standard,” in Proc. Int. Conf. Power Electronics and Motion Control, 2010, pp. 25-32.
[13] T. Sun, X. Xie, G. Li, Y. Gu, Y. Deng, Z. Wang, and Z. Wang, “An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy,” in Proc. IEEE Annual Int. Conf. Engineering in Medicine and Biology Society, 2010, pp. 6531-6534.
[14] D. J. Young, P. Cong, M. A. Suster, N. Chimanonart, and W. H. Ko, “Wireless power recharging for implantable bladder pressure chronic monitoring,” in Proc. IEEE Int. Conf. Nano/Micro Engineered and Molecular Systems, 2010, pp. 604-607.
[15] Q. H. Chen, S. C. Wong, C. K. Tse, and X. B. Ruan, “Analysis, design, and control of a transcutaneous power regulator for artificial hearts,” IEEE Trans. Biomed. Circuits Syst., vol. 3, no. 1, pp. 23-31, Feb. 2009.
[16] D. B. Shire, S. K. Kelly, J. H. Chen, P. Doyle, M. D. Gingerich, S. F. Cogan, W. A. Drohan, O. Mendoza, L. Theogarajan, J. L. Wyatt, and J. F. Rizzo, “Development and implantation of a minimally invasive wireless subretinal neurostimulator,” IEEE Trans. Biomed. Eng., vol. 56, no. 10, pp. 2502-2511, Oct. 2009.
[17] N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. IEEE APEC, 1997, vo1. 2, pp. 841-847.
[18] J. G. Hayes, “Battery charging systems for electric vehicles,” in Proc. IEE Colloq. Electric Vehicles-A Technology Roadmap for the Future (Digest No. 1998/262), 1998, pp. 4/1-4/8.
[19] A. S. Masoum, S. Deilami, P. S. Moses, and A. Abu-Siada, “Impacts of battery charging rates of Plug-in electric vehicle on smart grid distribution systems,” in Proc. IEEE Eur. Conf. Innovative Smart Grid Technologies, 2010, pp. 1-6.
[20] J. G. Hayes, M. G. Egan, J. M. D. Murphy, S. E. Schulz, and J. T. Hall, “Wide-load-range resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface,” IEEE Trans. Ind. Appl. , vol 35, pp. 884-895, Jul. 1999.
[21] Y. Hori, “Future vehicle society based on electric motor, capacitor and wireless power supply,” in Proc. Int. Conf. Power Electronics, 2010, pp. 2931-2934.
[22] U. K. Madawala and D. J. Thrimawithana, “A two–way inductive power interface for single loads,” in Proc. Int. Conf. Industrial Technology, 2010, pp. 673-678.
[23] Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasuda, “Compact contactless power transfer system for electric vehicles,” in Proc. Int. Conf. Power Electronics, 2010, pp. 807-813.
[24] D. Marioli, E. Sardini, M. Serpelloni, and A. Taroni, “Contactless transmission of measurement information between sensor and conditioning electronics,” IEEE Trans. Instrum. Meas., vol. 57, no. 2, pp. 303-308, Feb. 2008.
[25] S. Y. Ahn and J. H. Kim, “Magnetic field design for high efficient amd low EMF wireless power transfer in on-line electric vehicle” in Proc. Eur. Conf. Antennas and Propagation, 2011, pp. 3979-3982.
[26] J. M. Barnard, J. A. Ferreira, and J. D. van Wyk, “Sliding transformers for linear contactless power delivery,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 774- 779, Dec. 1997.
[27] J. T. Boys, G. A. J. Elliot, and G. A. Covic, “An appropriate magnetic coupling co-efficient for the design and comparison of ICPT Pickups,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 333- 335, Jan. 2007.
[28] P. Sergeant and A. Van Den Bossche, “Inductive coupler for contactless power transmission,” IET Electr. Power Appl., vol. 2, no. 1, pp. 1- 7, Jan. 2008.
[29] http://techon.nikkeibp.co.jp/english/NEWS_EN/20120113/
203540/?SS=imgview_e&FD=49467143&ad_q
[30] http://www.gizmowatch.com/entry/haier-develops-completely-wireless-hdtv-courtesy-witricity/
[31] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83-86, Jul. 2007.
[32] R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient weakly-radiative wireless energy transfer: An EIT-like approach,” Ann. Phys., vol. 324, no. 8, pp. 1783-1795, Aug. 2009.
[33] A. Kurs, R. Moffatt, and M. Soljacic, “Simultaneous mid-range power transfer to multiple devices,” Appl. Phys. Lett., vol. 96, no. 4, p. 044 102, Jan. 2010.
[34] A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544- 554, Jan. 2011.
[35] http://news.bbc.co.uk/2/hi/in_pictures/7129507.stm
[36] http://www.intel.com/pressroom/kits/innovation/survey/
[37] C. S. Wang, G. A. Covic, and O. H. Stielau, “General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems,” in Proc. IEEE Annual Conf. Industrial Electronics Society, 2001, pp. 1049-1054.
[38] G. A. J. Elliott, J. T. Boys, and G. A. Covic, “A design methodology for flat pick-up ICPT systems,” in Proc. IEEE Conf. Industrial Electronics and Applications, 2006, pp. 1-7.
[39] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[40] G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3389-3391, Oct. 2006.
[41] M. L. G. Kissin, G. A. Covic, and J. T. Boys, “Steady-state flat-pickup loading effects in polyphase inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2274-2282, Jun. 2011.
[42] H. Y. Chen, W. Y. Jia, Q. X. Yang, G. H. Xu, X. Y. Liu, and M. G. Sun, “Coupling and compensation analysis of transcutaneous energy transmission for implantable artificial heart,” in Proc. IEEE Conf. Annual Northeast Bioengineering, 2009, pp. 1-2.
[43] X. Y. Liu, F. Zhang, S. A. Hackworth, R. J. Sclabassi, and M. G. Sun, “Modeling and simulation of a thin film power transfer cell for medical devices and implants,” in Proc. IEEE Int. Symposium Circuits Systems, 2009, pp. 3086-3089.
[44] F. Zhang, S. A. Hackworth, X. Y. Liu, H. Y. Chen, and M. G. Sun, “Wireless energy transfer platform for medical sensors and implantable devices,” in Proc. IEEE Annual Int. Conf. Engineering Medicine Biology Society, 2009, pp. 1045-1048.
[45] N. Yin, G. H. Xu, Q. X. Yang, J. Zhao, X. W. Yang, J. Q. Jin, W. N. Fu, and M. G. Sun, “Analysis of wireless energy transmission for implantable device based on coupled magnetic resonance,” IEEE Trans. Magn., vol. 48, no. 2, pp. 723-726, Feb. 2012.
[46] X. Liu and S. Y. Hui, “Simulation study and experimental verification of a universal contactless battery charging platform with localized charging features,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2202-2210, Nov. 2007.
[47] X. Liu and S. Y. Hui, “Optimal design of a hybrid winding structure for planar contactless battery charging platform,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 455-463, Jan. 2008.
[48] Y. P. Su, X. Liu, and S. Y. Hui, “Extended theory on the inductance calculation of planar spiral windings including the effect of double-layer electromagnetic shield,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2052-2061, Jul. 2008.
[49] Y. P. Su, X. Liu, and S. Y. Hui, “Mutual inductance calculation of movable planar coils on parallel surfaces,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1115-1123, Apr. 2009.
[50] T. Imura, H. Okabe, and Y. Hori, “Basic experimental study on helical antennas of wireless power transfer for electric vehicles by using magnetic resonant couplings,” in Proc. IEEE Conf. Vehicle Power Propulsion, 2009, pp. 936- 940.
[51] T. Ishizaki, D. Fukada, and I. Awai, “A novel concept for 2-dimensional free-access wireless power transfer system using asymmetric coupling resonators with different sizes,” in Proc. IEEE Int. Microwave Workshop Series Innovative Wireless Power Transmission: Technologies, Systems, and Applications, 2011, pp. 243-246.
[52] K. Fotopoulou and B. W. Flynn, “Wireless power transfer in loosely coupled link: coil misalignment model,” IEEE Trans. Magn., vol. 42, no. 2, pp. 416-430, Feb. 2011.
[53] K. Fotopoulou and B. W. Flynn, “A bidirectional inductive power interface for electric vehicles in V2G systems,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4789-4796, Oct. 2011.
[54] S. H. Lee and R. D. Lorenz, “Development and validation of model for 95%-efficiency 200-W wireless power transfer over a 30-cm air gap,” IEEE Trans. Ind. Appl., vol. 47, no. 6, pp. 2495-2504, Oct. 2011.
[55] I. J. Yoon and H. Ling, “Realizing efficient wireless power transfer using small folded cylindrical helix dipoles,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 846-849, 2010.
[56] 陳建任,具多鐵芯感應結構非接觸式油電混合車充電槳之研究,國立成功大學電機工程學系碩士論文,2009年。
[57] 李世華,電動載具用導軌型非接觸式感應饋電軌道之研製,國立成功大學電機工程學系碩士論文,2011年。
[58] 李昆蔚,電動載具用編織型非接觸式感應充電平台之研製,國立成功大學電機工程學系碩士論文,2011年。
[59] 李嘉猷、賴景明、沈紘宇,“應用於非接觸式電能傳輸系統之串聯型環形線圈研製,” 中華民國第三十二屆電力工程研討會論文集,2011年,1376-1380頁。
[60] C. S. Wang, O. H. Stielau, and G. A. Covic, “Load models and their application in the design of loosely coupled inductive power transfer systems,” in Proc. Int. Conf. Power System Technology, 2000, pp. 1053-1058.
[61] H. L. Li, A. P. Hu, G. A. Covic, and C. S. Tang, “Optimal coupling condition of IPT system for achieving maximum power transfer,” IEEE Electron. Lett., vol. 45, no. 1, pp. 76-77, Jan. 2009.
[62] Y. D. Tak, J. M. Park, and S. W. Nam, “Mode-based analysis of resonant characteristics for near-field coupled small antennas,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1238-1241, 2009.
[63] C. J. Chen, T. H. Chu, C. L. Lin, and Z. C. Jou, “A study of loosely coupled coils for wireless power transfer,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 7, pp. 536-540, Jul. 2010.
[64] T. Imura and Y. Hori, “Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4746-4752, Oct. 2011.
[65] S. H. Cheon, Y. H. Kim, S. Y. Kang, M. L. Lee, J. M. Lee, and T. Y. Zyung, “Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2906-2914, Jul. 2011.
[66] X. Nan and C. R. Sullivan, “An improved calculation of proximity-effect loss in high-frequency windings of round conductors,” in Proc. IEEE Conf. Annual Power Electronics Specialist, 2003, pp. 853-860.
[67] J. W. Kim, H. C. Son, K. H. Kim, and Y. J. Park, “Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 389-392, 2011.
[68] R. R. A. Syms, E. Shamonina, and L. Solymar, “Magneto-inductive waveguide devices,” IEEE Trans. Antennas Propag., vol. 153, no. 2, pp. 111-121, Apr. 2006.
[69] B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers,” IEEE Trans. Powers Electron., vol. 24, no. 7, pp. 1819-1825, Jul. 2009.
[70] F. Zhang, S. A. Hackworth, W. N. Fu, C. L. Li, Z. H. Mao, and M. G. Sun, “Relay effect of wireless power transfer using strongly coupled magnetic resonances,” IEEE Trans. Magn., vol. 47, no. 5, pp. 1478-1481, May 2011.
[71] M. Kiani, U. M. Jow, and M. Ghovanloo, “Design and optimization of a 3-coil inductive link for efficient wireless power transmission,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 1478-1481, Dec. 2011.
[72] C. K. Lee, W. X. Zhong, and S. Y. Hui, “Effects of magnetic coupling of nonadjacent resonators on wireless power domino-resonator systems,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1905-1916, Apr. 2012.
[73] Jongmin Park, Youndo Tak, Yoongoo Kim, Youngwook Kim, and Sangwook Nam, “Investigation of adaptive matching methods for near-field wireless power transfer,” IEEE Trans. Antennas Propag., vol. 59, no. 5, pp. 1769- 1773, May 2011.
[74] A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Ann. Phys., vol. 323, no. 1, pp. 34-48, Jan. 2008.
[75] T. P. Duong and J. W. Lee, “Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 442-444, Aug. 2011.