簡易檢索 / 詳目顯示

研究生: 邱彥富
Chiu, Yan-Fu
論文名稱: 低溫 (Ba,Ca)(Ti,Zr)O3介電材料與銅電極共燒研究
A study on low firing (Ba, Ca) (Ti, Zr) O3 dielectric cofired with Cu inner electrode
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 68
中文關鍵詞: 銅電極BCTZ介電材料燒結助劑
外文關鍵詞: Cu electrode, BCTZ-based dielectric materials, sintering aid
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,主要是研究高介電常數和高密度的(Ba,Ca)(Ti,Zr)O3(BCTZ)陶瓷與銅電極共燒並使用燒結助劑對材料有何影響。在SiO2和Li2CO3主要是在用來降低燒結溫度。當添加的SiO2和Li2CO3量都達到最佳化時,以得到最佳的介電特性和均勻晶粒分佈。然而,我們發現添加過量的Li2CO3會產生第二相,而導致BCTZ的介電常數和絕緣電阻下降,並使BCTZ的介電損耗增加。從我們的研究得知,可以藉由高解析度的穿透式電子顯微鏡和EDS可以檢測出二次相(Ba1.55Ca0.45Si1O4)的產生。從本實驗透過在還原氣氛下燒結溫度為1050℃並持溫2小時與銅電極共燒, 並在(Ba,Ca)(Ti,Zr)O3樣品中可量測到介電常數為9700,而介電損耗低至23×10-4,以及高達5×1010Ω絕緣電阻的特性。

    In this paper, the high dielectric constant and the high density of (Ba,Ca)(Ti,Zr)O3(BCTZ) ceramic using the sintering aid for co-firing with copper electrode was investigated. The SiO2 and Li2CO3 were used to reduce the sintering temperature below 1050℃ for 2hr in the reducing atmosphere due to the promote liquid-phase sintering. The additional amount of SiO2 and Li2CO3 have been optimized to achieve optimum dielectric characteristics and uniform grain size distribution. However, it was found that the excess amount of Li2CO3 resulted from the secondary phase, which led to the dielectric constant and insulation resistance of the BCTZ were decreased and the dielectric loss of BCTZ was increased. It was demonstrated that the secondary phase (Ba1.55Ca0.45Si1O4) was examined by High-Resolution Transmission Electron Microscopy and energy-dispersive spectrometry (HRTEM-EDS). The high dielectric constant up to 9700, dielectric loss of 23×10-4 and high insulation resistance up to 5×1010 of (Ba,Ca)(Ti,Zr)O3 of the specimen were sintered at 1050℃ for 2hr with copper electrode in the reducing atmosphere.

    第一章 緒論 1 1-1.前言 1 1-2.研究背景與動機 2 第二章 理論基礎與文獻回顧 3 2-1.鈦酸鋇的結構與基本性質 3 2-1-1鈦酸鋇的結構 3 2-1-2.鈦酸鋇的介電性質 5 2-1-3.晶粒大小對鈦酸鋇介電性質之影響 7 2-2.電容器 8 2-3.積層電容器 8 2-4.積層電容特性 12 2-4-1電容器與積層陶瓷電容基本原理 13 2-5.介電原理 16 2-6.極化現象與介電特性 17 2-6-1.空間電荷極化(Space Charge Polarization , PS) 17 2-6-2.電偶極極化(Dipole Polarization , Pd) 18 2-6-3.離子極化(Ionic Polarization , Pi) 18 2-6-4.電子極化(Electronic Polarization , Pe) 19 2-6-5.介電損耗 (Dielectric Loss) 21 2-7.燒結理論 22 2-7-1.固態燒結(Solid Phase Sintering) 22 2-7-2.液相燒結(Liquid Phase Sintering) 24 2-8.MLCC產品常見之種類 27 2-9.MLCC產品常見之規格 30 第三章 實驗製程 31 3-1.塊材(Bulk)實驗方法與設備介紹 31 3-1-1.配粉 33 3-1-2.異丙醇球磨(Ball mill) 33 3-1-3.PVA黏結劑造粒 34 3-1-4.過篩與加壓成型 35 3-1-5.手動網印銅電極(Screen Printing) 35 3-1-6.燒結(Sintering) 35 3-1-7.排膠(BBO)與燒結(Sintering) 36 3-2.量測方法與分析儀器 38 3-2-1.收縮率(Shrinkage)計算 38 3-2-2.阿基米德(Archimedes)密度量測 38 3-2-3.電容溫度係數 39 3-2-4.場發射型掃瞄式電子顯微鏡 40 3-2-5.穿透式電子顯微鏡 40 3-2-6.TEM試片製作 42 3-2-7.阻抗分析儀(Impedance Analyzer) 44 3-2-8.X-Ray繞射儀(X-Ray Diffraction;XRD) 45 第四章 結果與討論 47 4-1.各添加量Li2CO3對BCTZ之助燒效果 47 4-2.各添加量Li2CO3對BCTZ之不同燒結溫度與收縮率分析 47 4-2-1.Li2CO3添加量對BCTZ燒結在1050℃對相對密度之影響 49 4-2-2.Li2CO3摻雜對BCTZ之燒結溫度為1050℃與XRD分析 50 4-2-3.Cu與BCTZ之共燒分析 51 4-2-4.Li2CO3摻雜對BCTZ之不同燒結溫度與微結構分析 53 4-2-5.Li2CO3摻雜對BCTZ之不同燒結溫度與晶粒大小分析 57 4-3.Li2CO3對BCTZ之TEM與晶格繞射圖分析 59 4-4.Li2CO3添加對BCTZ之不同燒結溫度與介電常數分析 60 4-5.添加Li2CO3對BCTZ之不同燒結溫度與介電損失分析 61 4-6.Li2CO3添加對BCTZ之燒結溫度為1050℃與絕緣電阻分析 62 4-7.Li2CO3添加對BCTZ之燒結溫度為1050℃與電容變化率分析 63 第五章 結論 65 參考文獻 66

    [1] 吳朗,1994,電子陶瓷-介電陶瓷,全欣資訊圖書,台北。
    [2] Sakabe, Y., 1987, “ Dielectric materials for base-meatl multiplayer ceramic capacitors,”Ceram. Bull., vol. 66, pp. 1338-1341.
    [3] Yamaguchi, O., Morimi, M., Kawabata, H. and Shimizu, K., 1987, “ Formation and transformation of ZnTiO3,” J. Am. Ceram. Soc., Vol. 70, pp. C97-C98.
    [4] Hennings, D. F. K., 2001, “ Dielectric materials for sintering in reducing atmospheres,” J. Eur. Ceram. Soc., Vol. 21, pp. 1637-1642.
    [5] Herbert, J. M., 1963, “ High permittivity ceramics sintered in hydrogen,” Trans. Br. Ceram. Soc., Vol. 62., pp. 645.
    [6] Xiao, W. Z., Han, Y. H., Lal, M. and Smyth, D. M., 1987, “ Defect chemistry of BaTiO3 with additions of CaTiO3 ”, J. Am. Ceram. Soc., Vol. 70. pp. 100-103.
    [7] Kingery, W. D., Bowen, H. K. and Uhlmann, D. R., 1976, Introduction to Ceramics, 2nd ed., John Wiley & Sons, New York.
    [8] Rase, D. E. and Roy, R., 1955, “ Phase Equilibria in the System BaO-TiO2 ”, J.Am. Ceram. Soc., Vol. 38, pp. 102-103.
    [9] B. Jaffe, W. R. Cook, Jr, and H. Jaffe, Piezoelectric ceramics, William R. Cook, Jr. and Hans Jaffe Gould Inc., Cleveland, Ohio, U. S. A., 1971.
    [10] Nowotny, J., 1991, Electronic Ceramic Materials.
    [11] Kay, H. F. and Vousden, P., 1949, “ Symmetry Change in Barium Titanate at Low Temperature and Their Relation to Its Ferroelectricity Properties ”, Phil. Mag., Vol. 40, pp. 1019-1040.
    [12] Arlt, G., Hennings, D. and de, G., 1985, “ Dielectric properties of fine-grained barium titanate ceramics,” J. Appl. Phys., Vol. 58, pp. 1619-1625.
    [13]國立編譯館,電子陶瓷材料,徐氏文教基金會,台北,2001。
    [14] Kishi, H., Mizuno, Y., Chazono, H., 2003, “ Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives ”, Jpn. J. Appl. Phys. Vol. 42, pp. 1–15.
    [15]宋進祥,積層陶瓷電容器之可靠度評估與失效分析,國立成功大學工程科學系碩士論文,2006。
    [16] S. M. Rhim, S. Hong, H. Bak, O. K. Kim, “ Effects of B2O3 Addition on the Dielectric and Ferroelectric Properties of Ba0.7Sr0.3TiO3 Ceramics,” J. Am. Ceram. Soc., Vol.83, pp. 1145–1148, 2000.
    [17] J. R. Kim, D. W. Kim, I. S. Cho, B. S. Kim, J. An, K. S. Hong, “ Low temperature sintering and microwave dielectric properties of Ba3Ti5Nb6O28 with ZnO-B2O3 glass additions for LTCC applications,” J. Eur. Ceram. Soc., Vol.27, pp. 3075–3079, 2007.
    [18] H. Zhou, H. Wang, D, Zhou, L. Pang, X. Yao, “ Effect of ZnO and B2O3 on the sintering temperature and microwave dielectric properties of LiNb0.6Ti0.5O3 ceramics,” Mat. Chem. and Phy., Vol.109, pp. 510–514, 2008.
    [19] J. W. Cahn, R. B. Heady, “ Analysis of Capillary Forces in Liquid - Phase Sintering of Jagged Particles,” J. Am. Ceram., Vol. 53, pp. 406–409, 1970.
    [20] 汪建民,陶瓷技術手冊 ,中華民國科技發展進會,1994。
    [21] Koops, C. G., 1951, “ On the dispersion of resistivity and dielectric constant of somesemiconductors at audiofrequenies,” Phys. Rev., Vol. 83, pp. 121-124.
    [22] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann. Introduction to ceramics, John Wiley and Sons, New York, 1976.
    [23] 肖定全, 陶瓷材料,新文京開發出版社,台北,2003。
    [24] D. C. Sinclair, T. B. Adams, F. D. Morrison, A. R. West, “ CaCu3Ti4O12:One-step internal barrier layer capacitor,” Appl. Phys. Lett., Vol. 80, pp. 2153, 2002.
    [25] J. W. Cahn, R. B. Heady, “Analysis of Capillary Forces in Liquid - Phase Sintering of Jagged Particles,” J. Am. Ceram., Vol. 53, pp.406–409, 1970.
    [26] W. J. Huppmann and G. Petzow, Sintering process, Edited by G.C. Kuczynski, Plenum Press, New York, 1980.
    [27] R. M. German, Liquid Phase Sintering, Plenum Press, New York, 1985.
    [28] 汪建民,材料分析,中國材料科學,台北,1998。
    [29] 鮑中興,劉思謙,近代穿透式電子顯微鏡實務,滄海書局,台中,2008。
    [30] 林麗娟, X光繞射原理及其運用, 工業材料, 86, 101, 1994.
    [31] Ying-Chieh Lee, Chia-Wei Lin, Wei-Hua Lu, Wen-Jauh Chen, and Wen-Hsi Lee “Influence of SiO2 Addition on the Dielectric Properties and Microstructure of (Ba0.96Ca0.04)(Ti0.85Zr0.15)O3 Ceramics, ” Int. J. Appl. Ceram. Technol., pp.692-701 (2009).

    無法下載圖示 校內:2018-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE