簡易檢索 / 詳目顯示

研究生: 陳炳輝
Chen, Bing-Huei
論文名稱: 鋯鈦酸鉛薄膜及塊體陶瓷之製備、特性與應用之研究
Fabrication, Characterization and Application of Lead Titanate Zirconate Thin Films and Bulk Ceramics
指導教授: 吳朗
Wu, Long
黃正亮
Huang, Cheng-Liang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 99
中文關鍵詞: 鋯鈦酸鉛薄膜塊體陶瓷
外文關鍵詞: Bulk Ceramics, PZT Thin films
相關次數: 點閱:93下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   以正丙醇為溶劑的溶膠凝膠法,被用來製備靠近形變相界(MPB)的鋯鈦酸鉛(Zr/Ti~53/47)壓電陶瓷,當回流時間為Pb:Zr:Ti = 2:1:2時,所合成的凝膠溶液呈現透明狀、無沉澱物及淡黃色。DTA/TG、XRD及TEM用來分析鋯鈦酸鉛的粉末質量變動、結晶相及晶域結構。結果顯示: 煆燒溫度900oC / 4 小時、燒結溫度1100oC / 2 小時可得到晶粒小於1μm無焦綠石相,具鈣鈦礦結構的鋯鈦酸鉛壓電陶瓷。相對密度達7.9g/cm3,矯頑電場15.6 kV/cm,殘餘極化8.54 μC/cm2,且具備零諧振頻率溫度係數。
      至於以固態反應法製備之鋯鈦酸鉛(Zr/Ti~53/47)壓電陶瓷,藉由少量鈮的修正,所生成的空位有利於燒結及物質的傳輸,壓電性質可以大幅提高。本文探討1 mole% 鈮摻雜的鋯鈦酸鉛壓電陶瓷,燒結溫度對其結構、機電耦合因素及機械品質因素的影響。結果顯示: 煆燒溫度850oC / 2 小時、燒結溫度1250oC / 2 小時可得到無焦綠石相的鈣鈦礦結構。鋯鈦酸鉛壓電陶瓷的機電耦合因素可達0.62,機械品質因素50,適合作為諧振器及濾波器的應用。
      鋯鈦酸鉛壓電薄膜由於具備許多優異的特性,被視為未來以溶膠凝膠法製作微小化及積體化奈米元件的目標。利用添加微量甘油在0.2 M~0.3 M的鋯鈦酸鉛凝膠溶液中,沉積鋯鈦酸鉛壓電薄膜在多層結構Al/Si3N4/Si (100)基板上,探討凝膠溶液之濃度及燒結溫度變化對於壓電薄膜表面結構的影響。結果顯示:以0.3 M的凝膠溶液濃度沉積壓電薄膜,並且直接於溫度700oC進行30 分鐘燒結,可大幅改善壓電薄膜表面裂痕的現象,矯頑電場11.39 μc/cm2 ,殘餘極化84.52 kV/cm。另外,設計中心頻率為100 MHz、延遲線長為10μm的光罩,以上述之鋯鈦酸鉛壓電薄膜製作表面聲波諧振器,其插入損約為30 dB。

      In this thesis, lead zirconate titanate (PZT) piezoceramics prepared at a composition Zr/Ti ~ 53/47, contiguous to a morphotropic phase boundary (MPB) with gel powder synthesized by the chemical solution deposition (CSD) method utilizing less hazardous propyl alcohol as a solvent were developed. The PZT solutions were transparent and no precipitates were formed with a reflux time ratio of Pb:Zr:Ti = 2:1:2, and the composition similar to PbZr0.53Ti0.47O3. Thermal Analysis and Thermogravimetry (DTA/TG) analyzed mass fluctuations of the gel powders. X-ray diffractionmeter (XRD) investigation of the crystal phase and domain microstructure observation by Transmission Emission Microscopy (TEM), were carried out. From the results of the analysis, PZT ceramics calcinations at 900oC for 4 hours, and sintering at 1100oC for 2 hours could reach a pyrochlore-free crystal phase with relative density of approximately 7.9g/cm3 -- close to 98% of the theoretical value. The P-E hysteresis loop, measured by the Sawyer-Tower circuit, revealed that the remanent polarization (Pr) and coercive field (Ec) were 8.54 μC/cm2 and 15.6 kV/cm, respectively. Moreover, under such processing conditions the PZT piezoceramics had uniform grain size distribution less than 1μm and zero temperature coefficient of resonant frequency (TCF).
      However, in Nb-modified piezoelectric ceramics, the piezoelectric properties could be enhanced. The dependence of sintering effects on microstructure, mechanical quality factor Qm and electromechanical coupling factor k of 1 mole% Nb-doped PZT piezoceramics (Zr/Ti ~ 53/47) prepared by the conventional ceramic technology were also investigated. Replacement of Ti+4 by Nb+5 in such perovskite type solid solutions was accomplished by the creation of cation vacancies. These created vacancies seemed to facilitate material transport and benefit to sintering. Calcined at 850oC/2h and sintered at 1250oC/2h, the PZT ceramics had the minimum value of Qm = 50 and exhibited maximum electromechanical coupling factor kp = 0.62 which was suitable for piezoelectric resonator and filter applications.
      As mentioned above, ferroelectric thin films with a variety of properties and phenomena had been discovered or synthesized by the promise of even greater levels of miniaturization and integration in the future, particularly in terms of sol-gel methods of assembly for nanostructure devices. The PZT thin films with lower gel concentration of 0.2 M and 0.3 M were used, and deposited on Al/Si3N4/Si (100) substrate. The influence of gel solutions concentration and heating conditions on the morphology of PZT thin films were discussed. Further, the cracking problem was extremely improved under glycerin adding and sintering immediately in the prescribed temperature 700oC for 30 minutes. The values of the remanent polarization (Pr) and coercive field (Ec) are 11.39 μc/cm2 and 84.52 kV/cm, respectively. Besides, we also fabricated a SAW resonator on PZT ferroelectric thin films by lift-off method, its central frequency fo was designed as 100 MHz and the width of delay line was 10μm. Its insertion loss was circa 30dB.

    CONTENTS Abstract………………………………………………………………………………I Contents ……………………………………………………………………………V Table Captions ……………………………………………………………………VIII Figure Captions ……………………………………………………………………IX Chapter 1 General Introduction ………………………………………………1 1-1 Perovskite-type Structure ……………………………………………1 1-2 Piezoelectricity ………………………………………………………1 1-3 Domain Structure…………………………………………………………2 1-4 Pb-based PZT Piezoelectric Material.………………………………3 1-4-1 PZT Piezoceramics ………………………………………………………4 1-4-2 PZT Thin Films ……………………………………………………………6 1-5 Fabrication Methods ……………………………………………………7 1-5-1 Bulks ………………………………………………………………7 1-5-2 Thin Films …………………………………………………………7 1-6 Outline of the Thesis …………………………………………………9 Chapter 2 Experimental Procedure……………………………………………11 2-1 Sol-Gel Processing ………………………………………………………11 2-1-1 Deposition Chemistry ……………………………………11 2-1-2 Drying and Firing…………………………………………12 2-2 Sample Preparation.………………………………………………………12 2-2-1 Sol-Gel Derived PZT Piezoceramics……………………13 2-2-2 Nb-Modified Solid-State Reaction PZT Piezoceramics………………………………………………14 2-2-3 Sol-Gel and Spin Coating Deposited PZT Ferroelectric Thin Films.......................................14 2-3 Electroding …………………………………………………………15 2-4 Poling ………………………………………………………………15 2-4-1 Bulk materials ……………………………………………15 2-4-2 Thin Films …………………………………………………16 2-5 Characterization Analyses ………………………………………16 2-5-1 Gel Powders Size Distribution…………………………16 2-5-2 Crystal Phase and Microstructure ……………………16 2-5-3 Domain Observation ………………………………………17 2-5-4 Measurements of Piezoelectric Properties …………17 2-5-4-1 Equivalent Circuits and Measurement Method……………………………17 2-5-4-2 Electromechanical Coupling Factors and Mechanical Quality Factor…………………………………19 2-6 Fabrication of Surface Acoustic Waves Resonator …………21 Chapter 3 Evaluation of PZT Piezoceramics from Gel-Derived Powders.....................................22 3-1 Introduction ………………………………………………………22 3-2 Results and Discussion……………………………………………24 3-3 Conclusions …………………………………………………………27 Chapter 4 Effect of Nb-Modified on Microstructures and Piezoelectric Properties of PZT Piezoceramics.........................29 4-1 Introduction ………………………………………………………29 4-2 Results and Discussion …………………………………………30 4-3 Conclusions …………………………………………………………32 Chapter 5 Crack Alleviation Process of PZT Ferroelectric Thin Films by Sol-Gel Deposition and Application for SAW Device …………………34 5-1 Introduction ………………………………………………………34 5-2 Fundamentals of Surface Acoustic Waves………………………35 5-2-1 Interdigital Transducer…………………………………35 5-2-2 General Equations for Surface Waves and Bulk Waves ……………………………………………36 5-2-3 Surface Acoustic Waves Parameters …………………37 5-2-4 Surface Acoustic Waves Resonator ……………………39 5-3 Results and Discussion …………………………………………40 5-3-1 Crystal Structure…………………………………………40 5-3-2 Microstructure and Surface Morphology………………42 5-3-3 Analysis of Electrical Properties……………………43 5-3-4 Analysis of Interdigital Transducer Structure……43 5-3-5 Performance of SAW Resonator …………………………44 5-4 Conclusions …………………………………………………………44 Chapter 6 Conclusions and Future Works……………………………………46 References …………………………………………………………………………50 Tables ………………………………………………………………………………55 Figures………………………………………………………………………………60 Acknowledgements ………………………………………………………………99 Table Captions Table 1 A comparison of the different deposition techniques ………55 Table 2 Constants varying with vibration modes used for calculating electromechanical coupling factors as a function of resonance frequency ………………………………………………………………56 Table 3 The device parameters of a SAW resonator………………………57 Table 4 The reflux time and Zr/Ti ratio ………………………………58 Table 5 Dielectric constant and dielectric loss of the PZT bulks calcined at 900oC for 4 h, sintered at various temperatures under f = 1KHz, 102 KHz ……………………………………………………59 Figure Captions Fig. 1.1 Schematic of ABO3 perovskite structure ………………………60 Fig. 1.2 Interrelationship of piezoelectricity and subgroups on the basis of crystal Symmetry ………………………………………61 Fig. 1.3 Dependence of grains and domains of piezoelectric ceramic…………………………………………………………………62 Fig. 1.4 Phase diagram of the PbTiO3 – PbZrO3 solid solution system …………………………………………………………………63 Fig. 2.1 Schematic of sol-gel routes………………………………………64 Fig. 2.2 Flow diagram for the processing of PZT ceramics with powders prepared by sol-gel processing………………………………………………65 Fig. 2.3 Equivalent electrical circuits of a piezoelectric vibrator ………………………………………………………………66 Fig. 2.4 Schematic of (a) modified Sawyer-Tower circuit and (b) typical P-E hysteresis loop………………………………………………………67 Fig. 2.5 Schematic of lift-off process for fabricating IDT pattern…………………………………………………………………68 Fig. 3.1 PZT as calcined gel powders size distribution………………69 Fig. 3.2 DTA/TG curves of the dried PZT gels……………………………70 Fig. 3.3 X-ray diffraction patterns for PZT powders calcined at 900oC as a function of calcining time ……………………………………71 Fig. 3.4 Density variations of the PZT ceramics calcined at 900oC for 4 h, then sintered at various temperatures for 2 h ……………………72 Fig. 3.5 SEM morphology of PZT ceramic calcined at 900oC for 4 h and sintered at (a) 1000oC (b) 1100oC (c) 1200oC for 2 h …………………73 Fig. 3.6 TEM observation of PZT ceramic calcined at 900oC for 4 h, and then sintered at 1100oC for 2 h (a) bright-field image of the 900a-c domain boundary. (b) selected-area diffraction pattern …………74 Fig. 3.7 P-E hysteresis curve of PZT ceramic calcined at 900oC for 4 h, and then sintered at 1100oC for 2 h ………………………………………75 Fig. 3.8 Variation of temperature coefficient of resonator frequency (TCF) as a function of sintering temperature with fixed firing time 2 h and poling conditions 3.0 kV/mm, 90oC for 30 min…………………………76 Fig. 3.9 Variation of impedance with frequency for the poled PZT ceramic calcined at 900oC for 4 h, sintered at 1100oC for 2 h……77 Fig. 4.1 Scanning electron micrographs of surface morphology of PZT ceramics doped with 1 mole% Nb2O5 calcined at 850oC for 2 h, and sintered at (a) 1100oC (b) 1200oC (c) 1250oC for 2 h …………………………78 Fig. 4.2 Grain size variations between doped and undoped PZT ceramics as a function of the sintering temperature from 1100oC to 1250oC for 2 h ………………………………………………………79 Fig. 4.3 Scanning electron micrographs showing surface morphology of PZT ceramics sintered 1200oC for 2h (a) undoped (b) doped with 1 mole% Nb2O5……………………………………………………………………80 Fig. 4.4 XRD spectra for Nb2O5 doped samples. All samples were calcined at 850oC for 2 h, and then sintered except (a) as a function of sintering temperature (b) 1100oC (c) 1200oC and (d) 1250oC …………81 Fig. 4.5 P-E hysteresis curve of doped with Nb2O5 PZT ceramic calcined at 850oC for 2 h, sintered at 1250oC for 2 h. (Pr and Ec were 8.63 μC/cm2 and 17.2 kV/cm, respectively)…………………………………………82 Fig. 4.6 The variation of impedance with frequency for the poled doped PZT ceramic calcined at 850oC for 2 h, sintered at various temperatures for 2 h…………………………………………………………………83 Fig. 4.7 The variation of piezoelectric properties for doped PZT ceramic calcined at 850oC for 2 h, sintered at various temperatures for 2 h…………………………………………………………………84 Fig. 4.8 Variation of impedance with frequency for the poled doped with Nb2O5 PZT calcined at 850oC for 2 h, sintered at 1250oC for 2 h…………………………………………………………………85 Fig. 5.1 Elementary structure for SAW/pseudo-SAW delay line on piezoelectric substrate comprising input and output IDTS with uniform finger spacing ………………………………………………………86 Fig. 5.2 Transfer function components for the SAW device……………87 Fig. 5.3 XRD patterns of PZT thin films (a) sintered at various temperature for 30 min at 50oC/min. (b) sintered at 650oC for 30 min at various heating rate ……………………………………………………………………88 Fig. 5.4 Volume fraction of pyrochlore of PZT thin films (a) sintered at various temperatures for 30 min at 50oC/min. (b) sintered at 650oC for 30 min at various heating rate……………………………………………89 Fig. 5.5 XRD patterns of 0.2 M PZT films with sintering at 700oC for 30 min (a) drying, pre-baking and sintering with heating rate 50oC/min repeatedly. (b) drying and pre-baking repeatedly, then sintering with heating rate 50oC/min. (c) drying and pre-baking repeatedly, then sintering with heating rate 5oC/min ………………………………………………90 Fig. 5.6 Scanning electron microscopy of cross-sections of 0.2 M PZT film with sintering at 700oC for 30 min (a) drying, pre-baking and sintering with 50oC/min repeatedly. (b) drying and pre-baking repeatedly, then sintering with heating rate 50oC/min. (c) drying and pre-baking repeatedly, then sintering with heating rate 5oC/min ……91 Fig. 5.7 SEM micrographs of PZT film surface obtained with different molar concentration and sintered at 700oC for 30 min with 50oC/min (a) 0.2 M (b) 0.3 M ………………………………………………………………92 Fig. 5.8 SEM micrographs of PZT film surface obtained at different heating rate and sintered at 700oC for 30 min (a) 50oC/min (b) 100oC/min (c) 150oC/min………………………………………………………………93 Fig. 5.9 P-E hysteresis curve of PZT thin film deposited at 0.2 M gel concentration with a drying at 150oC for 5 min and a pre-baking at 350oC for 10 min, and then sintering at 700oC for 30 min with a heating rate 50oC/min…………………………………………………………94 Fig. 5.10 Basic design structure of SAW delay line on PZT films …95 Fig. 5.11 Basic gadget of measured frequency for a SAW device on PZT films…………………………………………………………96 Fig. 5.12 Frequency response of a SAW delay line on PZT thin films……………………………………………………………97

    [1]B.Jaffe, W.R.Cook and H.Jaffe, Piezoelectric Ceramics, Academic Press, New
    York, 1971, p.50.
    [2]P.Curie and J. Curie, Bull. Soc. Min. de. France. 3 (1880) 90.
    [3]V.V.Prisedsky, Ferroelectrics. 41 (1982) 97.
    [4]G.Arlt and P.Sasko, J.Appl.Phys. 51 (1980) 4956.
    [5]G.King and E.K.Goo, J.Am.Ceram.Soc. 73 (1990) 1534.
    [6]H.Y.Hu, M.H.Chan, Z.H.Wen and M.P.Harmer, J.Am.Ceram.Soc. 69 (1986) 594.
    [7]E.Goo, R.K.Mishra and G.Tomas, J.Appl.Phys. 52 (1981) 2940.
    [8]J.R.Maldonado and A.H.Meitzler, Ferroelectrics. 3 (1972) 169.
    [9]N.Uchida and T.Ikeda, Jpn.J.Appl.Phys. 4 (1965) 867.
    [10]D.Berlincourt and H.A. Krueger, J.Appl.Phys. 30 (1959) 1804.
    [11]R.C.Buchanan, Ceramic Materials for Electronics, 2nd ed.; New York, 1991,
    p.182.
    [12]B.A.Tuttle, J.A.Voigt, D.C.Goodnow, D.L.Lamppa, T.J.Headley, M.O.Eatough,
    G.Zender, R.D.Nasby and S.M.Rodgers, J.Am.Ceram.Soc. 76 (1993) 1537.
    [13]H.Obayashi, Y.Sakurai and T.Gejo, J.Solid.State.Chem.17 (1976) 299.
    [14]D.Dimos, H.N.Alshareef, W.L.Warren and B.A.Tuttle, J.Appl.Phys. 80 (1996)
    1682.
    [15]J.F.Scott and C.A.Paz de Araujo, Science. 246 (1989) 1400.
    [16]S.Aggarwal, S.R.Perusse, C.W.Tipton, R.Ramesh, H.D.Drew, T.Venkatesan,
    D.B.Romero, V.B.Podobedov and A.Weber, Appl.Phys.Lett. 73 (1998) 1973.
    [17]J.Chen, M.P.Harmer and D.M.Smyth, J.Appl.Phys. 76 (1994) 5394.
    [18]H.Haertling, Ferroelectrics, 75 (1987) 25.
    [19]F.Scott and C.A.Paz de Araujo, Science, 246 (1989) 1400.
    [20]V.A.Isupov, Ferroelectrics, 46 (1983) 217.
    [21]L.Wu, Ph.D.Thesis, NCKU, Tainan, Taiwan, R.O.C, 1982.
    [22]S.B.Majumder, B.Roy, R.S.Katiyar, S.B.Krupanidhi, J.Appl.Phys. 90 (2001)
    2975.
    [23]A.S.Bhalla and K.M.Nair, Ceramics Intl., 25 (1992).
    [24]V.M.Ristic, Principles of Acoustic Devices, New York, Wiley, 1983.
    [25]Q.X.Su, P.Kirby, E.Komuro, M.Imura, Q.Zhang, and R.Whatmore, IEEE
    Trans.Microwave Theory & Tech. 49 (2001) 769.
    [26]S.V.Krishnaswamy, J.Rosenbaum, S.Horwitz, C.Vale and R.A.Moore, Ultrasonics
    Symposium. (1990) 529.
    [27]S.Yokoyama, Y.Ito, K.Ishihara, K.Hamada, S.Ohnishi, J.Kudo and K.Sakiyama,
    Jpn.J.Appl.Phys. 34 (1995) 767.
    [28]Horry Robbins, Proceeding ICF4, Japan. 1980; 7-10.
    [29]A.Clearfield, A.M. Gadalla and W.H. Marlow, J.Am.Ceram.Soc.72 (1989) 1789.
    [30]S.J. Milne and S.H. Pyke, J.Am. Ceram. Soc. 74 (1991) 1407.
    [31]N.Tohge, S. Takahashi and T. Minami, J.Am. Ceram. Soc. 74 (1991) 67.
    [32]J. Fukushima, K. Koaira and T. Matsushita, J.Mater.Sci. 19 (1984) 595.
    [33]R.Ramesh, A.Inam, W.K.Chan, F.Tillerot, B.Wilkens, C.C.Chang, T.Sands,
    J.M.Tarascon and V.G. Keramidas, Appl.Phys. Lett. 59 (1991) 3542.
    [34]K.Saenger, R.Rpy, K.Etzold, and J.Cuomo, Mater.Res.Soc. Symp. Proc. 200
    (1991)115.
    [35]H.Fujisawa, K.Morimoto, M.Shimizu, H.Niu, K.Honda and S.Ohtani,
    Jpn.J.Appl.Phys. 39 (2000) 5446.
    [36]K.Nagashima, M.Aratani and H.Funakubo, Jpn.J.Appl.Phys. 39 (2000) 996.
    [37]X.S.Li, T.Tanaka and Y.Suzuki, Thin Solid Films. 375 (2000) 91.
    [38]A.Okada, J.Appl.Phys. 48 (1977) 2905.
    [39]H.Adachi, T. Kawaguchi, M. Kitabatake and K. Wasa, Jpn.J.Appl.Phys. 22 (1983)
    22.
    [40]H.Suzuki, T.Koizumi, Y.Kondo and S.Kaneko, J.Euro.Ceram.Soc.19 (1999) 1397.
    [41]R.G. Polcawich and S.Trolier-Mckinstry, J.Mater.Res. 15 (2000) 2505.
    [42]G.J.Norga, J.Maes, E.Coppye, L.Fe, D.Wouters and O.V. der Biest, J.Mater.Res.
    15 (2000) 2309.
    [43]B.V.Hiremath, Ceramic Trans., 11 (1990) 49.
    [44]G.Yi, Z.Wu, M. Sayer, J.Appl.Phys. 64 (1988) 2717.
    [45]R.Bale, J.Sol-Gel Sci.Tech., 6 (1996) 7.
    [46]J.B.Wachtman and R.A.Haber, Ceramic Films and Coatings, New Jersey, NP,1993,
    p.227.
    [47]G.Yi, Z.Wu and M. Sayer, J.Appl.Phys. 64 (1988) 2717.
    [48]V.S.Postnikov and S.K.Turkov, J.Phys.Chem.Solids. 31 (1970) 1785.
    [49]M.Yamaguchi, K.Hashimoto, R.Nanjyo, N.Hanajima, S.Tsutsumi and T.Yonezawa,
    IEEE Intl. Freq. Ctrl. Symp. Procs. 1997, p.544.
    [50]D.W.Dye, Proc. Phys. Soc. 38 (1926) 399.
    [51]S.Butterworth, Proc. Phys. Soc. 27 (1915) 410.
    [52]K.S.Van Dyke, Proc. I.R.E., 16 (1928) 742.
    [53]IEEE Standard on Piezoelectricity, New York, 176 (1978) 42.
    [54]M.Onoe, H.F.Tiersten and A.H.Meitzler, J.Acoust.Soc.Am. 35 (1963) 36.
    [55]V.E.Bottom, Introduction to Quartz Crystal Unit Design, New York, VNR, 1982,
    p.53.
    [56]F.Kulcsar, J. Am. Ceram. Soc. 1 (1959) 49.
    [57]M.M.Abou-Sekkina, BD-EL-RAOUFF.Tawfik, Ceram.Int. 1 (1984) 33.
    [58]W.Wersing, Ferroelectrics. 22 (1978) 813.
    [59]H.Banno, T.Tsunooka, Jpn.J.Appl.Phys. 6 (1976) 954.
    [60]H.Thomann, W.Wersing, Ferroelectrics. 40 (1982) 189.
    [61]J.H.Liao, S.Y.Cheng, C.M. Wang, Ferroelectrics. 106 (1990) 357.
    [62]S.A. Mabud, J.Appl. Cryst. 13 (1980) 211.
    [63]T.Nagata, Y.Naksjima, R.Sasaki, Electron Commun. Jpn. 57-A (1974) 19.
    [64]R.Bechmann, Proc. IRE, 49 (1961) 509.
    [65]S.Takahashi, S.Hirose, K.Uchino, J.Am.Ceram.Soc. 77 (1994) 2429.
    [66]K.Okazaki, K.Nagata, J.Am.Ceram.Soc. 56 (1973) 82.
    [67]D.A.Buckner, P.D.Wilcox, Am.Ceram.Soc.Bull. 51 (1972) 218.
    [68]P.Gr.Lucuta, Fl.Constantinescu, D.Barb, J.Am.Ceram.Soc. 68 (1985) 533.
    [69]Y.S.Ng, S.M.Alexander, Ferroelectrics, 51 (1983) 81.
    [70]A.Z.Simoes, M.A.Zaghete, M.Cilense, J.A.Varela, B.D.Stojanovic,
    J.Euro.Ceram.Soc. 21 (2001) 1151.
    [71]M.Okuyama, Hamakawa, Ferroelectrics, 63 (1985) 243.
    [72]C.Shi, L.Meidong, L.Churong, Z.Yike, J.D.Costa, Thin Solid Films, 375 (2000)
    288.
    [73]A.Wu, L.Yang, P.M.Vilarinho, I.M.MirandaSalvado, Thin Solid Films, 365 (2000)
    24.
    [74]T.Hioki,M.Akiyama,T.Ueda,Y.Onozuka, Y.Hara, K.Suzuki, Jpn.J.Appl.Phys. 39
    (2000) 5048.
    [75]R.M.White and F.W.Voltmer, Appl.Phys.Lett. 17 (1965) 314.
    [76]C.K.Campbell, Surface Acoustic Wave Devices for Mobile and Wireless
    Communications, New York, AP, 1998, p.20.
    [77]A.J.Slobodnik, Jr., E.D.Conway and R.T.Delmonico, Microwave Acoustics
    Handbook, Massachusetts, 1A (1973).
    [78]R.F.Milsom, M.Redwood and N.H.C.Reilly, The interdigital transducer, New
    York, John Wiley and Sons, 1977, p.59.
    [79]Y.Shibata, Y.Kanno, K.Kaya, M.Kanai and T.Kawai, Jpn.J.Appl.Phys. 34 (1995)
    320.
    [80]E.A.Ash, Proc. IEEE G-MTT International Microwave Symp. 1970, p.385.
    [81]C.Dunnrowicz, F.Sandy and T.Parker. Proc. 1977 IEEE Ultrasonics Symp. 1976,
    p.386.
    [82]S.L.Swartz and T.R.Shrout, MRS Bulletin 17(1982) 1245.
    [83]M.Huffman, J.P.Goral, M.M.Al-Jassium, A.R.Mason and K.M.Jones, Thin Solid
    Films 193/194 (1990) 1071.
    [84]A.Z.Simoes, M.A.Zaghete, M.Cilense, J.A.Varela, B.D.Stojanovic,
    J.Euro.Ceram.Soc. 21 (2001) 1151.
    [85]H.Kozuka, and S.Takenaka, J.Am.Ceram.Soc. 85 (2002) 2701.

    下載圖示 校內:立即公開
    校外:2004-06-18公開
    QR CODE