| 研究生: |
陳炳輝 Chen, Bing-Huei |
|---|---|
| 論文名稱: |
鋯鈦酸鉛薄膜及塊體陶瓷之製備、特性與應用之研究 Fabrication, Characterization and Application of Lead Titanate Zirconate Thin Films and Bulk Ceramics |
| 指導教授: |
吳朗
Wu, Long 黃正亮 Huang, Cheng-Liang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 鋯鈦酸鉛薄膜 、塊體陶瓷 |
| 外文關鍵詞: | Bulk Ceramics, PZT Thin films |
| 相關次數: | 點閱:93 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以正丙醇為溶劑的溶膠凝膠法,被用來製備靠近形變相界(MPB)的鋯鈦酸鉛(Zr/Ti~53/47)壓電陶瓷,當回流時間為Pb:Zr:Ti = 2:1:2時,所合成的凝膠溶液呈現透明狀、無沉澱物及淡黃色。DTA/TG、XRD及TEM用來分析鋯鈦酸鉛的粉末質量變動、結晶相及晶域結構。結果顯示: 煆燒溫度900oC / 4 小時、燒結溫度1100oC / 2 小時可得到晶粒小於1μm無焦綠石相,具鈣鈦礦結構的鋯鈦酸鉛壓電陶瓷。相對密度達7.9g/cm3,矯頑電場15.6 kV/cm,殘餘極化8.54 μC/cm2,且具備零諧振頻率溫度係數。
至於以固態反應法製備之鋯鈦酸鉛(Zr/Ti~53/47)壓電陶瓷,藉由少量鈮的修正,所生成的空位有利於燒結及物質的傳輸,壓電性質可以大幅提高。本文探討1 mole% 鈮摻雜的鋯鈦酸鉛壓電陶瓷,燒結溫度對其結構、機電耦合因素及機械品質因素的影響。結果顯示: 煆燒溫度850oC / 2 小時、燒結溫度1250oC / 2 小時可得到無焦綠石相的鈣鈦礦結構。鋯鈦酸鉛壓電陶瓷的機電耦合因素可達0.62,機械品質因素50,適合作為諧振器及濾波器的應用。
鋯鈦酸鉛壓電薄膜由於具備許多優異的特性,被視為未來以溶膠凝膠法製作微小化及積體化奈米元件的目標。利用添加微量甘油在0.2 M~0.3 M的鋯鈦酸鉛凝膠溶液中,沉積鋯鈦酸鉛壓電薄膜在多層結構Al/Si3N4/Si (100)基板上,探討凝膠溶液之濃度及燒結溫度變化對於壓電薄膜表面結構的影響。結果顯示:以0.3 M的凝膠溶液濃度沉積壓電薄膜,並且直接於溫度700oC進行30 分鐘燒結,可大幅改善壓電薄膜表面裂痕的現象,矯頑電場11.39 μc/cm2 ,殘餘極化84.52 kV/cm。另外,設計中心頻率為100 MHz、延遲線長為10μm的光罩,以上述之鋯鈦酸鉛壓電薄膜製作表面聲波諧振器,其插入損約為30 dB。
In this thesis, lead zirconate titanate (PZT) piezoceramics prepared at a composition Zr/Ti ~ 53/47, contiguous to a morphotropic phase boundary (MPB) with gel powder synthesized by the chemical solution deposition (CSD) method utilizing less hazardous propyl alcohol as a solvent were developed. The PZT solutions were transparent and no precipitates were formed with a reflux time ratio of Pb:Zr:Ti = 2:1:2, and the composition similar to PbZr0.53Ti0.47O3. Thermal Analysis and Thermogravimetry (DTA/TG) analyzed mass fluctuations of the gel powders. X-ray diffractionmeter (XRD) investigation of the crystal phase and domain microstructure observation by Transmission Emission Microscopy (TEM), were carried out. From the results of the analysis, PZT ceramics calcinations at 900oC for 4 hours, and sintering at 1100oC for 2 hours could reach a pyrochlore-free crystal phase with relative density of approximately 7.9g/cm3 -- close to 98% of the theoretical value. The P-E hysteresis loop, measured by the Sawyer-Tower circuit, revealed that the remanent polarization (Pr) and coercive field (Ec) were 8.54 μC/cm2 and 15.6 kV/cm, respectively. Moreover, under such processing conditions the PZT piezoceramics had uniform grain size distribution less than 1μm and zero temperature coefficient of resonant frequency (TCF).
However, in Nb-modified piezoelectric ceramics, the piezoelectric properties could be enhanced. The dependence of sintering effects on microstructure, mechanical quality factor Qm and electromechanical coupling factor k of 1 mole% Nb-doped PZT piezoceramics (Zr/Ti ~ 53/47) prepared by the conventional ceramic technology were also investigated. Replacement of Ti+4 by Nb+5 in such perovskite type solid solutions was accomplished by the creation of cation vacancies. These created vacancies seemed to facilitate material transport and benefit to sintering. Calcined at 850oC/2h and sintered at 1250oC/2h, the PZT ceramics had the minimum value of Qm = 50 and exhibited maximum electromechanical coupling factor kp = 0.62 which was suitable for piezoelectric resonator and filter applications.
As mentioned above, ferroelectric thin films with a variety of properties and phenomena had been discovered or synthesized by the promise of even greater levels of miniaturization and integration in the future, particularly in terms of sol-gel methods of assembly for nanostructure devices. The PZT thin films with lower gel concentration of 0.2 M and 0.3 M were used, and deposited on Al/Si3N4/Si (100) substrate. The influence of gel solutions concentration and heating conditions on the morphology of PZT thin films were discussed. Further, the cracking problem was extremely improved under glycerin adding and sintering immediately in the prescribed temperature 700oC for 30 minutes. The values of the remanent polarization (Pr) and coercive field (Ec) are 11.39 μc/cm2 and 84.52 kV/cm, respectively. Besides, we also fabricated a SAW resonator on PZT ferroelectric thin films by lift-off method, its central frequency fo was designed as 100 MHz and the width of delay line was 10μm. Its insertion loss was circa 30dB.
[1]B.Jaffe, W.R.Cook and H.Jaffe, Piezoelectric Ceramics, Academic Press, New
York, 1971, p.50.
[2]P.Curie and J. Curie, Bull. Soc. Min. de. France. 3 (1880) 90.
[3]V.V.Prisedsky, Ferroelectrics. 41 (1982) 97.
[4]G.Arlt and P.Sasko, J.Appl.Phys. 51 (1980) 4956.
[5]G.King and E.K.Goo, J.Am.Ceram.Soc. 73 (1990) 1534.
[6]H.Y.Hu, M.H.Chan, Z.H.Wen and M.P.Harmer, J.Am.Ceram.Soc. 69 (1986) 594.
[7]E.Goo, R.K.Mishra and G.Tomas, J.Appl.Phys. 52 (1981) 2940.
[8]J.R.Maldonado and A.H.Meitzler, Ferroelectrics. 3 (1972) 169.
[9]N.Uchida and T.Ikeda, Jpn.J.Appl.Phys. 4 (1965) 867.
[10]D.Berlincourt and H.A. Krueger, J.Appl.Phys. 30 (1959) 1804.
[11]R.C.Buchanan, Ceramic Materials for Electronics, 2nd ed.; New York, 1991,
p.182.
[12]B.A.Tuttle, J.A.Voigt, D.C.Goodnow, D.L.Lamppa, T.J.Headley, M.O.Eatough,
G.Zender, R.D.Nasby and S.M.Rodgers, J.Am.Ceram.Soc. 76 (1993) 1537.
[13]H.Obayashi, Y.Sakurai and T.Gejo, J.Solid.State.Chem.17 (1976) 299.
[14]D.Dimos, H.N.Alshareef, W.L.Warren and B.A.Tuttle, J.Appl.Phys. 80 (1996)
1682.
[15]J.F.Scott and C.A.Paz de Araujo, Science. 246 (1989) 1400.
[16]S.Aggarwal, S.R.Perusse, C.W.Tipton, R.Ramesh, H.D.Drew, T.Venkatesan,
D.B.Romero, V.B.Podobedov and A.Weber, Appl.Phys.Lett. 73 (1998) 1973.
[17]J.Chen, M.P.Harmer and D.M.Smyth, J.Appl.Phys. 76 (1994) 5394.
[18]H.Haertling, Ferroelectrics, 75 (1987) 25.
[19]F.Scott and C.A.Paz de Araujo, Science, 246 (1989) 1400.
[20]V.A.Isupov, Ferroelectrics, 46 (1983) 217.
[21]L.Wu, Ph.D.Thesis, NCKU, Tainan, Taiwan, R.O.C, 1982.
[22]S.B.Majumder, B.Roy, R.S.Katiyar, S.B.Krupanidhi, J.Appl.Phys. 90 (2001)
2975.
[23]A.S.Bhalla and K.M.Nair, Ceramics Intl., 25 (1992).
[24]V.M.Ristic, Principles of Acoustic Devices, New York, Wiley, 1983.
[25]Q.X.Su, P.Kirby, E.Komuro, M.Imura, Q.Zhang, and R.Whatmore, IEEE
Trans.Microwave Theory & Tech. 49 (2001) 769.
[26]S.V.Krishnaswamy, J.Rosenbaum, S.Horwitz, C.Vale and R.A.Moore, Ultrasonics
Symposium. (1990) 529.
[27]S.Yokoyama, Y.Ito, K.Ishihara, K.Hamada, S.Ohnishi, J.Kudo and K.Sakiyama,
Jpn.J.Appl.Phys. 34 (1995) 767.
[28]Horry Robbins, Proceeding ICF4, Japan. 1980; 7-10.
[29]A.Clearfield, A.M. Gadalla and W.H. Marlow, J.Am.Ceram.Soc.72 (1989) 1789.
[30]S.J. Milne and S.H. Pyke, J.Am. Ceram. Soc. 74 (1991) 1407.
[31]N.Tohge, S. Takahashi and T. Minami, J.Am. Ceram. Soc. 74 (1991) 67.
[32]J. Fukushima, K. Koaira and T. Matsushita, J.Mater.Sci. 19 (1984) 595.
[33]R.Ramesh, A.Inam, W.K.Chan, F.Tillerot, B.Wilkens, C.C.Chang, T.Sands,
J.M.Tarascon and V.G. Keramidas, Appl.Phys. Lett. 59 (1991) 3542.
[34]K.Saenger, R.Rpy, K.Etzold, and J.Cuomo, Mater.Res.Soc. Symp. Proc. 200
(1991)115.
[35]H.Fujisawa, K.Morimoto, M.Shimizu, H.Niu, K.Honda and S.Ohtani,
Jpn.J.Appl.Phys. 39 (2000) 5446.
[36]K.Nagashima, M.Aratani and H.Funakubo, Jpn.J.Appl.Phys. 39 (2000) 996.
[37]X.S.Li, T.Tanaka and Y.Suzuki, Thin Solid Films. 375 (2000) 91.
[38]A.Okada, J.Appl.Phys. 48 (1977) 2905.
[39]H.Adachi, T. Kawaguchi, M. Kitabatake and K. Wasa, Jpn.J.Appl.Phys. 22 (1983)
22.
[40]H.Suzuki, T.Koizumi, Y.Kondo and S.Kaneko, J.Euro.Ceram.Soc.19 (1999) 1397.
[41]R.G. Polcawich and S.Trolier-Mckinstry, J.Mater.Res. 15 (2000) 2505.
[42]G.J.Norga, J.Maes, E.Coppye, L.Fe, D.Wouters and O.V. der Biest, J.Mater.Res.
15 (2000) 2309.
[43]B.V.Hiremath, Ceramic Trans., 11 (1990) 49.
[44]G.Yi, Z.Wu, M. Sayer, J.Appl.Phys. 64 (1988) 2717.
[45]R.Bale, J.Sol-Gel Sci.Tech., 6 (1996) 7.
[46]J.B.Wachtman and R.A.Haber, Ceramic Films and Coatings, New Jersey, NP,1993,
p.227.
[47]G.Yi, Z.Wu and M. Sayer, J.Appl.Phys. 64 (1988) 2717.
[48]V.S.Postnikov and S.K.Turkov, J.Phys.Chem.Solids. 31 (1970) 1785.
[49]M.Yamaguchi, K.Hashimoto, R.Nanjyo, N.Hanajima, S.Tsutsumi and T.Yonezawa,
IEEE Intl. Freq. Ctrl. Symp. Procs. 1997, p.544.
[50]D.W.Dye, Proc. Phys. Soc. 38 (1926) 399.
[51]S.Butterworth, Proc. Phys. Soc. 27 (1915) 410.
[52]K.S.Van Dyke, Proc. I.R.E., 16 (1928) 742.
[53]IEEE Standard on Piezoelectricity, New York, 176 (1978) 42.
[54]M.Onoe, H.F.Tiersten and A.H.Meitzler, J.Acoust.Soc.Am. 35 (1963) 36.
[55]V.E.Bottom, Introduction to Quartz Crystal Unit Design, New York, VNR, 1982,
p.53.
[56]F.Kulcsar, J. Am. Ceram. Soc. 1 (1959) 49.
[57]M.M.Abou-Sekkina, BD-EL-RAOUFF.Tawfik, Ceram.Int. 1 (1984) 33.
[58]W.Wersing, Ferroelectrics. 22 (1978) 813.
[59]H.Banno, T.Tsunooka, Jpn.J.Appl.Phys. 6 (1976) 954.
[60]H.Thomann, W.Wersing, Ferroelectrics. 40 (1982) 189.
[61]J.H.Liao, S.Y.Cheng, C.M. Wang, Ferroelectrics. 106 (1990) 357.
[62]S.A. Mabud, J.Appl. Cryst. 13 (1980) 211.
[63]T.Nagata, Y.Naksjima, R.Sasaki, Electron Commun. Jpn. 57-A (1974) 19.
[64]R.Bechmann, Proc. IRE, 49 (1961) 509.
[65]S.Takahashi, S.Hirose, K.Uchino, J.Am.Ceram.Soc. 77 (1994) 2429.
[66]K.Okazaki, K.Nagata, J.Am.Ceram.Soc. 56 (1973) 82.
[67]D.A.Buckner, P.D.Wilcox, Am.Ceram.Soc.Bull. 51 (1972) 218.
[68]P.Gr.Lucuta, Fl.Constantinescu, D.Barb, J.Am.Ceram.Soc. 68 (1985) 533.
[69]Y.S.Ng, S.M.Alexander, Ferroelectrics, 51 (1983) 81.
[70]A.Z.Simoes, M.A.Zaghete, M.Cilense, J.A.Varela, B.D.Stojanovic,
J.Euro.Ceram.Soc. 21 (2001) 1151.
[71]M.Okuyama, Hamakawa, Ferroelectrics, 63 (1985) 243.
[72]C.Shi, L.Meidong, L.Churong, Z.Yike, J.D.Costa, Thin Solid Films, 375 (2000)
288.
[73]A.Wu, L.Yang, P.M.Vilarinho, I.M.MirandaSalvado, Thin Solid Films, 365 (2000)
24.
[74]T.Hioki,M.Akiyama,T.Ueda,Y.Onozuka, Y.Hara, K.Suzuki, Jpn.J.Appl.Phys. 39
(2000) 5048.
[75]R.M.White and F.W.Voltmer, Appl.Phys.Lett. 17 (1965) 314.
[76]C.K.Campbell, Surface Acoustic Wave Devices for Mobile and Wireless
Communications, New York, AP, 1998, p.20.
[77]A.J.Slobodnik, Jr., E.D.Conway and R.T.Delmonico, Microwave Acoustics
Handbook, Massachusetts, 1A (1973).
[78]R.F.Milsom, M.Redwood and N.H.C.Reilly, The interdigital transducer, New
York, John Wiley and Sons, 1977, p.59.
[79]Y.Shibata, Y.Kanno, K.Kaya, M.Kanai and T.Kawai, Jpn.J.Appl.Phys. 34 (1995)
320.
[80]E.A.Ash, Proc. IEEE G-MTT International Microwave Symp. 1970, p.385.
[81]C.Dunnrowicz, F.Sandy and T.Parker. Proc. 1977 IEEE Ultrasonics Symp. 1976,
p.386.
[82]S.L.Swartz and T.R.Shrout, MRS Bulletin 17(1982) 1245.
[83]M.Huffman, J.P.Goral, M.M.Al-Jassium, A.R.Mason and K.M.Jones, Thin Solid
Films 193/194 (1990) 1071.
[84]A.Z.Simoes, M.A.Zaghete, M.Cilense, J.A.Varela, B.D.Stojanovic,
J.Euro.Ceram.Soc. 21 (2001) 1151.
[85]H.Kozuka, and S.Takenaka, J.Am.Ceram.Soc. 85 (2002) 2701.