| 研究生: |
羅尹秋 Lo, Yin-Chiu |
|---|---|
| 論文名稱: |
探討先天性免疫調控分子TAPE與endolysosomes在RIG-I-like receptor訊息傳遞中的角色 Roles of an innate immune adaptor TAPE and endolysosomes in RIG-I-like receptor signaling |
| 指導教授: |
凌斌
Ling, Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2012 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | RIG-I-like receptors 、TAPE 、endolysosomes |
| 外文關鍵詞: | RIG-I-like receptors, TAPE, endolysosomes |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
先天性免疫系統是人體對抗外來病原菌的第一道防線,當受到感染的時候,宿主的pattern-recognition receptors (PRRs)會辨識病原菌具有高保留性的結構pathogen-associated molecular patterns (PAMPs)並且活化許多訊息傳遞路徑。當有病毒入侵的時候,宿主細胞質中的重要病毒RNA接受器RIG-I-like receptors (RLRs),包括RIG-I與MDA5,會偵測病毒RNA之後活化下游訊息傳遞路徑並產生proinflammatory cytokines與type I interferons。目前文獻大部分認為在RIG-I辨識到病毒RNA活化之後會位移至mitochondria,與位在mitochondrial的調控蛋白IPS-1/MAVS交互作用活化下游訊息。然而,並沒有直接的證據證明RIG-I受到刺激活化之後會與mitochondria以及IPS-1位於相同位置。TAPE (TBK1-Associated Protein in Endolysosomes)是我們實驗室發現的一個新的先天免疫調控分子。實驗結果指出,TAPE是一個位於endolysosome的調控蛋白,並且位於IPS-1上游參與RLR的訊息傳遞路徑。因此,我們推測RIG-I在受到病毒刺激之後會先位移到endolysosomes。我論文主要的工作是探討TAPE以及endolysosomes在RLR的訊息傳遞中扮演的角色。我們已發表的文獻以及我的結果顯示,TAPE在細胞受到刺激的前後都會與endolysosomes的標示蛋白位於相同位置,並且TAPE是一個會與磷脂質結合的蛋白,根據以上結果推斷TAPE是一個能結合於endolysosomes的蛋白。另外,我的結果顯示TAPE-N與RIG-I-CARD會有交互作用,並且刺激之後的TAPE會與RIG-I位於相同位置。因此我想進一步確認RIG-I在受到刺激之後是否會位移到endolysosomes。根據我的螢光結果,RIG-I在受到刺激之後會與early endosome的標示蛋白Rab5位於相同位置。另外,knockdown endolysosome標示蛋白Rab5以及Rab7的時候,會抑制RIG-I及MDA5活化IFN-β,而knockdown Rab5以及Lamp1的時候則會抑制RIG-I及MDA5活化NF-κB,進一步用抑制lysosome酸化的藥物作用後也會抑制RIG-I訊息傳遞路徑。不同於目前的想法,RLR的訊息傳遞中mitochondria是關鍵胞器,我的結果指出,endolysosomes也參與在RLR的訊息傳遞路徑中。之後的工作則會更深入探討TAPE是如何調控RLR的訊息傳遞。
The innate immune system is the first line of defense against invading pathogen. Following infection, host pattern-recognition receptors (PRRs) detect highly conserved components of pathogen known as pathogen-associated molecular patterns (PAMPs) and trigger multiple signaling pathways. During virus invasion, host RIG-I-like receptors (RLRs), including RIG-I and MDA5, are key cytosolic sensors for detecting viral RNA to induce the activation of proinflammatory cytokines and type I interferons. Studies suggested that viral RNA activates RIG-I translocation to mitochondria, so that RIG-I can interact with a mitochondrial adaptor IPS-1/MAVS for triggering downstream signaling. However, direct evidences indicating that RIG-I is co-localized with IPS-1 at mitochondria after virus infection is still lacking. TAPE (TBK1-Associated Protein in Endolysosomes), an innate immune regulator, was previously identified in our lab. Our data suggest that TAPE is an endolysosomal adaptor acting upstream of IPS-1 in RLR signaling. Therefore, we are interested to know whether RIG-I translocates to endolysosomes after viral stimulation. The work at my thesis aims to determine the role of TAPE adaptor and endolysosomal mediators in RLR signaling. The previous studies of our lab and my current results revealed that TAPE is co-localized with endolysosomal proteins before and after stimulation. My results also showed that TAPE is able to bind phospholipids. These data support the idea that TAPE is able to target endolysosomes. In addition, my results showed that TAPE-N interacts with RIG-I-CARD and TAPE is co-localized with RIG-I after stimulation. Then, I further confirmed whether RIG-I translocates to endolysosomes after stimulation. According to my fluorescent data, RIG-I is co-localized with early endosomal protein Rab5 after stimulation. Moreover, my results also showed that knockdown of endolysosomal protein Rab5 and Rab7 impaired the IFN-β pathway mediated by RIG-I and MDA5, while knockdown of Rab5 and Lamp1 impaired the NF-κB pathway mediated by RIG-I and MDA5. Furthermore, treatment of cells with lysosomal inhibitors blocked the RIG-I mediated IFN-β activation. Distinct from the current idea which mitochondria are key compartments for RLR signaling, our preliminary data suggest that endolysosomes are also involved in the RLR pathways. Future work will determine how TAPE regulates the RLR signaling pathways.
1. Janeway, C.A., Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor symposia on quantitative biology 54 Pt 1, 1-13 (1989).
2. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. & Hoffmann, J.A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973-983 (1996).
3. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C.A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-397 (1997).
4. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085-2088 (1998).
5. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805-820 (2010).
6. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501-505 (2007).
7. Fernandes-Alnemri, T., Yu, J.W., Datta, P., Wu, J. & Alnemri, E.S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509-513 (2009).
8. Ablasser, A. et al. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nature immunology 10, 1065-1072 (2009).
9. Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nature immunology 11, 997-1004 (2010).
10. Yang, P. et al. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nature immunology 11, 487-494 (2010).
11. Zhang, Z. et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nature immunology 12, 959-965 (2011).
12. Pichlmair, A. & Reis e Sousa, C. Innate recognition of viruses. Immunity 27, 370-383 (2007).
13. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature immunology 5, 730-737 (2004).
14. Satoh, T. et al. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proceedings of the National Academy of Sciences of the United States of America 107, 1512-1517 (2010).
15. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101-105 (2006).
16. Loo, Y.M. & Gale, M., Jr. Immune signaling by RIG-I-like receptors. Immunity 34, 680-692 (2011).
17. Samanta, M., Iwakiri, D., Kanda, T., Imaizumi, T. & Takada, K. EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN. The EMBO journal 25, 4207-4214 (2006).
18. Rasmussen, S.B. et al. Herpes simplex virus infection is sensed by both Toll-like receptors and retinoic acid-inducible gene- like receptors, which synergize to induce type I interferon production. The Journal of general virology 90, 74-78 (2009).
19. Hornung, V. et al. 5'-Triphosphate RNA is the ligand for RIG-I. Science 314, 994-997 (2006).
20. Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314, 997-1001 (2006).
21. Kato, H. et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. The Journal of experimental medicine 205, 1601-1610 (2008).
22. Zust, R. et al. Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nature immunology 12, 137-143 (2011).
23. Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nature immunology 6, 981-988 (2005).
24. Seth, R.B., Sun, L., Ea, C.K. & Chen, Z.J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669-682 (2005).
25. Meylan, E. et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167-1172 (2005).
26. Xu, L.G. et al. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Molecular cell 19, 727-740 (2005).
27. Hou, F. et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448-461 (2011).
28. Michallet, M.C. et al. TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28, 651-661 (2008).
29. Dixit, E. et al. Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141, 668-681 (2010).
30. Horner, S.M., Liu, H.M., Park, H.S., Briley, J. & Gale, M., Jr. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proceedings of the National Academy of Sciences of the United States of America 108, 14590-14595 (2011).
31. Gack, M.U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916-920 (2007).
32. Oshiumi, H., Matsumoto, M., Hatakeyama, S. & Seya, T. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. The Journal of biological chemistry 284, 807-817 (2009).
33. Oshiumi, H. et al. The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell host & microbe 8, 496-509 (2010).
34. Zeng, W. et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315-330 (2010).
35. Jiang, X. et al. Ubiquitin-Induced Oligomerization of the RNA Sensors RIG-I and MDA5 Activates Antiviral Innate Immune Response. Immunity 36, 959-973 (2012).
36. Friedman, C.S. et al. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO reports 9, 930-936 (2008).
37. Kayagaki, N. et al. DUBA: a deubiquitinase that regulates type I interferon production. Science 318, 1628-1632 (2007).
38. Lin, R. et al. Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. The Journal of biological chemistry 281, 2095-2103 (2006).
39. Arimoto, K. et al. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proceedings of the National Academy of Sciences of the United States of America 104, 7500-7505 (2007).
40. Sun, Z., Ren, H., Liu, Y., Teeling, J.L. & Gu, J. Phosphorylation of RIG-I by casein kinase II inhibits its antiviral response. Journal of virology 85, 1036-1047 (2011).
41. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834-840 (2009).
42. Fitzgerald, K.A. et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nature immunology 4, 491-496 (2003).
43. Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13, 539-548 (2000).
44. Hemmi, H. et al. The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. The Journal of experimental medicine 199, 1641-1650 (2004).
45. McWhirter, S.M. et al. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proceedings of the National Academy of Sciences of the United States of America 101, 233-238 (2004).
46. Ishikawa, H. & Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674-678 (2008).
47. Zhao, T. et al. The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways. Nature immunology 8, 592-600 (2007).
48. Ryzhakov, G. & Randow, F. SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. The EMBO journal 26, 3180-3190 (2007).
49. Gallagher, C.M. & Knoblich, J.A. The conserved c2 domain protein lethal (2) giant discs regulates protein trafficking in Drosophila. Developmental cell 11, 641-653 (2006).
50. Rogaeva, A., Galaraga, K. & Albert, P.R. The Freud-1/CC2D1A family: transcriptional regulators implicated in mental retardation. Journal of neuroscience research 85, 2833-2838 (2007).
51. Basel-Vanagaite, L. et al. The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation. Journal of medical genetics 43, 203-210 (2006).
52. Ou, X.M. et al. Freud-1: A neuronal calcium-regulated repressor of the 5-HT1A receptor gene. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 7415-7425 (2003).
53. Nakamura, A., Naito, M., Tsuruo, T. & Fujita, N. Freud-1/Aki1, a novel PDK1-interacting protein, functions as a scaffold to activate the PDK1/Akt pathway in epidermal growth factor signaling. Molecular and cellular biology 28, 5996-6009 (2008).
54. Martinelli, N. et al. CC2D1A is a regulator of ESCRT-III CHMP4B. Journal of molecular biology 419, 75-88 (2012).
55. Usami, Y. et al. Regulation of CHMP4/ESCRT-III function in human immunodeficiency virus type 1 budding by CC2D1A. Journal of virology 86, 3746-3756 (2012).
56. Zhao, M., Li, X.D. & Chen, Z. CC2D1A, a DM14 and C2 domain protein, activates NF-kappaB through the canonical pathway. The Journal of biological chemistry 285, 24372-24380 (2010).
57. Chang, C.H. et al. TBK1-associated protein in endolysosomes (TAPE) is an innate immune regulator modulating the TLR3 and TLR4 signaling pathways. The Journal of biological chemistry 286, 7043-7051 (2011).
58. Chen, K.R. et al. TBK1-Associated Protein in Endolysosomes (TAPE)/CC2D1A is a key regulator linking RIG-I-like receptors to antiviral immunity. The Journal of biological chemistry (2012).
59. Huotari, J. & Helenius, A. Endosome maturation. The EMBO journal 30, 3481-3500 (2011).
60. Grant, B.D. & Donaldson, J.G. Pathways and mechanisms of endocytic recycling. Nature reviews. Molecular cell biology 10, 597-608 (2009).
61. Zeigerer, A. et al. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature 485, 465-470 (2012).
62. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735-749 (2005).
63. Luzio, J.P., Pryor, P.R. & Bright, N.A. Lysosomes: fusion and function. Nature reviews. Molecular cell biology 8, 622-632 (2007).
64. Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nature reviews. Molecular cell biology 10, 623-635 (2009).
65. Jean, S. & Kiger, A.A. Coordination between RAB GTPase and phosphoinositide regulation and functions. Nature reviews. Molecular cell biology 13, 463-470 (2012).
66. Lemmon, M.A. Membrane recognition by phospholipid-binding domains. Nature reviews. Molecular cell biology 9, 99-111 (2008).
67. Botelho, R.J., Efe, J.A., Teis, D. & Emr, S.D. Assembly of a Fab1 phosphoinositide kinase signaling complex requires the Fig4 phosphoinositide phosphatase. Molecular biology of the cell 19, 4273-4286 (2008).
68. Heil, F. et al. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. European journal of immunology 33, 2987-2997 (2003).
69. Matsushima, H., Yamada, N., Matsue, H. & Shimada, S. TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J Immunol 173, 531-541 (2004).
70. Ahmad-Nejad, P. et al. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. European journal of immunology 32, 1958-1968 (2002).
71. Takahasi, K. et al. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Molecular cell 29, 428-440 (2008).
72. Hurley, J.H. & Misra, S. Signaling and subcellular targeting by membrane-binding domains. Annual review of biophysics and biomolecular structure 29, 49-79 (2000).
73. Cho, W. & Stahelin, R.V. Membrane binding and subcellular targeting of C2 domains. Biochimica et biophysica acta 1761, 838-849 (2006).
74. Kagan, J.C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nature immunology 9, 361-368 (2008).
75. Onoguchi, K. et al. Virus-infection or 5'ppp-RNA activates antiviral signal through redistribution of IPS-1 mediated by MFN1. PLoS pathogens 6, e1001012 (2010).
76. Yanai, H. et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462, 99-103 (2009).
77. Ohkuma, S. & Poole, B. Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. The Journal of cell biology 90, 656-664 (1981).
78. Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M. & Tashiro, Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. The Journal of biological chemistry 266, 17707-17712 (1991).
79. Sasai, M., Linehan, M.M. & Iwasaki, A. Bifurcation of Toll-like receptor 9 signaling by adaptor protein 3. Science 329, 1530-1534 (2010).
80. Czech, M.P. Dynamics of phosphoinositides in membrane retrieval and insertion. Annual review of physiology 65, 791-815 (2003).
81. Hovius, R., Lambrechts, H., Nicolay, K. & de Kruijff, B. Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochimica et biophysica acta 1021, 217-226 (1990).
82. Stace, C.L. & Ktistakis, N.T. Phosphatidic acid- and phosphatidylserine-binding proteins. Biochimica et biophysica acta 1761, 913-926 (2006).
83. Caberoy, N.B., Zhou, Y., Alvarado, G., Fan, X. & Li, W. Efficient identification of phosphatidylserine-binding proteins by ORF phage display. Biochemical and biophysical research communications 386, 197-201 (2009).
84. Martin, S.J. et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. The Journal of experimental medicine 182, 1545-1556 (1995).