簡易檢索 / 詳目顯示

研究生: 安翔
An, Shiang
論文名稱: 行人頭部保護彈出式引擎蓋之設計與分析
Design and Analysis of Pedestrian Head Protecting Pop-Up Hood System
指導教授: 黃才烱
Huang, Tasi-Jeon
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 138
中文關鍵詞: 有限元素法機構設計頭部傷害準則行人碰撞彈出式引擎蓋
外文關鍵詞: Head Injury Criterion, Mechanism Design, Finite Element Method, Pop-Up Hood, Pedestrian Impact
相關次數: 點閱:75下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 行人死亡在總交通意外事故死亡中,佔有相當大的比例。先前的研究指出,50%以上的行人死亡是由於頭部傷害所造成,而傷害多因頭部撞擊至車體的引擎蓋與擋風玻璃處。為降低行人碰的傷害,近年來業界開始積極推動行人碰撞的被動安全性設計,諸如彈出式引擎蓋與車體外部安全氣囊等。本研究主要將針對現有的彈出式引擎蓋進行改良設計。
    彈出式引擎蓋的作用在於當行人碰撞發生時,將引擎蓋後緣抬升一段高度並加以固定,以提供引擎蓋下足夠的自由空間,並在行人頭部碰撞到引擎蓋時,以彈出式引擎蓋的整體結構形變吸收衝擊的能量,進而降低頭部碰撞所造成的傷害。然而,當引擎蓋彈出並固定後,某些剛性較高之區域,如引擎蓋後緣兩端的支撐處等,卻無法以結構形變的方式有效降低頭部傷害,並且造成頭部碰撞時有較高的頭部受傷準則值。本研究針對該現象加以探討分析,以Euro-NCAP的引擎蓋劃分與測試方式進行引擎蓋全區域的碰撞模擬與評估,並提出降低高頭部傷害準則值區域之新型彈出式引擎蓋系統,該系統包含一組新型的引擎蓋抬升機構,並以彈簧阻尼器作為結構支撐以降低原本彈出式引擎蓋的結構剛性。
    本研究可概分為三階段。第一階段中,首先建立車體與頭部衝擊器的有限元素模型,並加以驗證;第二階段則以所建立的有限元素模型進行Euro-NCAP各碰撞測試點的碰撞模擬,分析並比較現有與新型的彈出式引擎蓋,並且針對新型彈出式引擎蓋的三個主要的設計參數:引擎蓋抬升高度、支撐彈簧剛性與阻尼常數進行分析設計;第三階段則針對新型彈出式引擎蓋進行機構設計,並以剛體動力學加以驗證。
    本論文於最後對本研究的進行總結,並且針對未來本研究可能的改善方向給予建議。

    Fatalities related to pedestrian accidents contribute a large proportion of all traffic accidental deaths. Previous studies show that more than 50% of pedestrian fatalities are caused by head injuries and most of them are impacted by engine hood or windshield. In order to prevent the human life loss due to car-pedestrian collisions, passive safety devices to lower the possibility of head injury has been proposed in industry recently. Among them are pop-up hood systems and outside airbags, etc. In this study, the improvement of the current pop-up hood is our main focus.
    The pop-up hood system lifts up the rear part of the hood for a distance at the time when the car-pedestrian impact happens and provides a free space between the hood and the hard components underneath the hood. As the head of pedestrian impacts to the hood, free space of pop-up hood allows the hood to deform and absorb most of the impact energy through structural deformation. The system, as a result, is capable of reducing the head injury with its structural deformation. However, some area of the structure, such as supports, still keeps its high stiffness after the hood is popped up, and it might still cause high risk of head injury. Therefore, such phenomenon is analyzed and a new pop-up hood system to improve the high-HIC-valued area is developed in this thesis. This pop-up system is designed with a newly driving mechanism and spring-damper system to reduce the high stiffness of the original hood structural support. For validation, the numerical tests based on Euro-NCAP are conducted to evaluate the performance over the complete area of the hood system.
    The study is departed into 3 stages. In the first stage, the finite element model of the headform impactor and the car front structure are created and validated. In the second stage, the numerical tests based on Euro-NCAP are simulated and the performance of the original and the new pop-up hood system are analyzed and compared. The three design parameters for the new pop-up hood systems, hood lift-up height, supporting spring stiffness and damping coefficient, are also analyzed. In the last stage, pop-up mechanism for the new pop-up hood system is designed and tested with rigid-body dynamics. Finally, conclusions and suggestions of this study are summarized in the last part of the thesis.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XII 第一章 緒論 1 1.1 前言 1 1.2 論文架構 5 第二章 研究背景 7 2.1 行人碰撞傷害 7 2.1.1 行人碰撞傷害統計 7 2.1.2 行人碰撞過程 12 2.1.3 行人頭部碰撞傷害量化指標 14 2.2 行人碰撞模擬與車體安全性評估 16 2.2.1 行人碰撞人偶 16 2.2.2 行人碰撞次系統 17 2.2.3 電腦數值模擬 19 2.3 EEVC與Euro-NCAP行人安全評鑑測試程序 22 2.3.1 EEVC WG17測試規範 22 2.3.2 ACEA提案法規 24 2.3.3 Euro-NCAP碰撞測試程序 25 2.4 行人碰撞頭部保護設計與彈出式引擎蓋 27 2.4.1 行人頭部碰撞保護設計 28 2.4.2 彈出式引擎蓋(Pop-Up Hood; PUH) 31 2.5 電腦數值模擬理論基礎 34 2.5.1 碰撞過程之模擬 34 2.5.2 機構運動之模擬 35 第三章 行人頭部與車體關係之建構與分析 36 3.1 車體模型之建立 36 3.1.1 引擎蓋碰撞測試區域之劃分 36 3.1.2 引擎蓋模型之建立與簡化 38 3.2 兒童頭部衝擊器模型之建立與驗證 41 3.2.1 EEVC兒童頭部衝擊器定義與有限元素模型之建立 41 3.2.2 EEVC WG10與WG17兒童頭部衝擊器驗證試驗 43 3.2.3 小結 47 3.3引擎蓋Euro-NCAP各碰撞測試點之模擬 48 3.4 碰撞過程剛性曲線(Stiffness Curve)分析 52 3.4.1 剛性曲線(接觸力與穿透深度曲線) 52 3.4.2 兒童頭部衝擊器撞擊剛體平板之分析 54 3.4.3兒童頭部衝擊器撞擊引擎蓋C1A測試點之分析 56 3.4.4兒童頭部衝擊器撞擊引擎蓋C3D測試點之分析 59 3.5 車體結構與引擎部位對兒童頭部衝擊器碰撞之影響 61 3.6 小結 64 第四章 彈出式引擎蓋設計參數分析 65 4.1 彈出式引擎蓋抬升高度設計 65 4.1.1 Krenn引擎蓋抬升高度參數分析 65 4.1.2 引擎蓋抬升高度參數分析之有限元素設定 67 4.1.3 引擎蓋抬升高度參數分析結果 69 4.1.4 支撐樑元素剛性設定及分析 75 4.1.5 引擎蓋抬升高度設計 77 4.2 新型彈出式引擎蓋支撐剛性設計 80 4.2.1 新型彈出式引擎蓋設計概念 80 4.2.2 彈出式引擎蓋支撐剛性參數分析 81 4.2.3 引擎蓋支撐彈簧剛性設計 87 4.2.4 並聯阻尼對HIC36值之影響 89 4.3 小結 92 第五章 彈出式引擎蓋機構設計 93 5.1 現有引擎蓋彈出機構設計 93 5.1.1 預壓彈簧致動引擎蓋彈出機構 93 5.1.2 火工致動器引擎蓋彈出機構 95 5.1.3 機構方式作動之引擎蓋彈出機構 97 5.2 新型引擎蓋彈出機構之設計 99 5.2.1 新型引擎蓋彈出機構之設計需求 99 5.2.2 引擎蓋彈出機構之設計 101 5.3 新型引擎蓋彈出機構之模擬驗證 107 5.3.1 引擎蓋彈出機構剛體動力學模型之建立 107 5.3.2 新型引擎蓋彈出機構之運動分析 108 5.3.3 引擎蓋重力對支撐彈簧之影響 110 5.4 小結 112 第六章 結論與建議 113 6.1 結論 113 6.2 本研究後續改進方向與未來發展 115 參考文獻 117 附錄A EuroNCAP頭部碰撞測試與星等判定 124 A.1 車輛標示 124 A.2 劃分測試區域 126 A.3 選擇測試區塊 128 A.4 測試撞擊器與量測 129 A.5 分數與星等判定 129 附錄B 引擎蓋抬升高度參數分析 131 附錄C 引擎蓋支撐彈簧剛性參數分析 134 自述 138

    Akiyama, A., Okamoto, M., Rangarajan, N., “Development and Application of the New Pedestrian Dummy,” Society of Automotive Engineers (SAE), Paper No. 2001-06-0048, 2001.
    Anderson, R.W., McLean, A.J., Farmer, M.J., Lee, B.H., Brooks, C.G., “Vehicle Travel Speeds and the Incidence of Fatal Pedestrian Crashes,” International IRCOBI Conference on the Biomechanics of Impact, 1997.
    Ashton, S.J., Mackay, G.M., “Some Characteristics of the Population who Suffer Trauma as Pedestrians When Hit by Cars and Some Resulting Implications,” International IRCOBI Conference on the Biomechanics of Impact, 1979.
    Berg, A., Dettinger, J., Grandel, J., “Personenkraftwagen/ Fußgänger- Unfälle- Erkenntnisse aus neueren Untersuchungen und Crash-Test Mit Besonderer Berücksichtigung Moderner Kompaktfahrzeuge,” Verkehrsunfall und Fahrzeugtechnik, 1997.
    Burn-Cassan, F., Vincent, J.C., Fayon, A., Cesari, D., Cavallero, C., Muron, G., “Comparison of Experimental Car-Pedestrian Collisions Performed with Various Modified Side Impact Dummies and Cadavers,” 28th Stapp Car Crash Conference, Society of Automotive Engineers (SAE), Paper No., 841664, 1984.
    Carter, E., “UK National Epidemiological Studies on Pedestrian and Cyclist Accidents (STATS19 data: 1997-2001),” APROSYS - SP3, Birmingham Automotive Safety Centre, University of Birmingham, 2005.
    Cavallero, C., Cesari, D., Ramet, M., Billault, P., Farisse, J., Seriat-Gautier, B., Bonnoit, J., “Improvement of Pedestrian Safety: Influence of Shape of Passenger Car-Front Structures Upon Pedestrian Kinematics and Injuries: Evaluation Based on 50 Cadaver Tests,” Society of Automotive Engineers (SAE), Paper No. 830624, 1983.
    Coley, G., Lange, R. de, Oliveira, P. de, Neal-Sturgess, C.E., Happee, R., “Pedestrian Human Body Validation Using Detailed Real-Word Accidents,” International IRCOBI Conference on the Biomechanics of Impact, 2001.
    Droste, A., Naughton, P., Cate, P., “The Virtual Stiffness Profile– A Design Methodology for Pedestrian Safety,” Society of Automotive Engineers (SAE), Paper No. 2002-01-2119, 2002.
    EC, “Directive 2003/102/EC of the European Parliament and of the Council of 17 November 2003 Relating to the Protection of the Pedestrians and Other Vulnerable Road Users in the Event of a Collision with a Motor Vehicle and Amending Council Directive 70/156/EEC,” Commission of the European Communities, 2003.
    EEVC, “EEVC Working Group 10 Report— Proposals for Methods to Evaluate Pedestrian Protection for Passenger Cars,” European Experimental Vehicles Committee, 1994.
    EEVC, “EEVC Working Group 17 Report— Improved Test Methods to Evaluate Pedestrian Protection Afforded by Passenger Cars,” European Enhanced Vehicle-Safety Committee, 1998.
    Euro-NCAP, Pedestrian Testing Protocol, Version 4.1, 2004.
    Fredriksson, R., Håland, Y., Yang, J., “Evaluation of a New Pedestrian Head Injury Protection System with a Sensor in the Bumper and Lifting The Bonnet’s Rear Part,” 17th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 131, 2001.
    Hertz, E., “A Note on the Head Injury Criteria (HIC) as a Predictor of the Risk of Skull Fracture,” Association for the Advancement of Automotive Medicine (AAAM), 1993.
    Hoffmann, J., Kretzschmar, A., Blundell, M.V., “Investigation into the Use of Adaptable Car Structures Concepts for Pedestrian Impact Protection,” International Conference on Vehicle Safety, 2002.
    Hoshimoto, M., Sato, Y., Koyama, T., “Pedestrian Protection Airbag System,” United States Patent, Patent No. US 6,920,954 B2, 2005.
    Howard, M., Thomas, A., Koch, W., “Validation and Application of a Finite Element Pedestrian Humanoid Model for use in Pedestrian Accident Simulations,” International IRCOBI Conference on the Biomechanics of Impact, 2000.
    Howard, M., “Pedestrian Safety Module Device,” United States Patent, Patent No. US 6,237,992 B1, 2001.
    Ishikawa, H., Kajzer, J., Schroeder, G., “Computer Simulation of Impact Response of Impact Response of the Human Body in Car-Pedestrian Accidents,” 37th Stapp Car Crash Conference, Society of Automotive Engineers (SAE), Paper No. 933129, 1993.
    Ishikawa, T., Kore, H., Furumoto, A., Kuroda, S., “Evaluation of Pedestrian Protection Structures Using Impactors and Full-Scale Dummy Tests,” 17th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 271, 2001.
    ITARDA, “Annual Traffic Accident Report in 2000,” Institute for Traffic Accident Research and Data Analysis of Japan, 2001.
    Kalliske, I., Friesen, F., “Improvements to Pedestrian Protection as Exemplified on a Standard-Sized Car,” 17th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 283, 2001.
    Kerkeling, C., Scher, J., Thompson, G.-M., “Structural Hood and Hinge Concepts For Pedestrian Protection,” 19th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 05-0304, 2005.
    Krenn, M., Mlekusch, B., Wilfling, C., Dobida, F., Deutscher, E., “Development and Evaluation of a Kinematic Hood for Pedestrian Protection,” Society of Automotive Engineers (SAE) World Congress, Paper No. 2003-01-0897, 2003.
    Kuehnel, A., Appel, H., “First Step to a Pedestrian Safety Car,” 22nd Stapp Car Crash Conference, Society of Automotive Engineers (SAE), Paper No. 780901, 1978.
    Kuppa, S., “Injury Criteria for Side Impact Dummies,” National Highway Traffic Safety Administration (NHTSA), 2004.
    Laglatin, N., Blundell, M.V., Blount, G.N., “The Simulation of Pedestrian Impact With a Combined Multibody Finite Elements System Model,” Journal of Engineering Design, Vol. 17, No. 5, pp. 463-477, 2006.
    Lawrence, G.J.L., “The Next Steps for Pedestrian Protection Test Methods,” 19th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 05-0379, 2005.
    Lee, K.B., Jung, H.J., Bae, H.I., “The Study on Developing Active Hood Lift System For Decreasing Pedestrian Head Injury,” 20th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 07-0198, 2007.
    Lissner, H.R., Lebow, M., and Evens, F.G., “Experimental Studies on the Relation Between Acceleration and Intracranial Pressure Changes in man,” Surgery Gynecology & Obstetrics, Vol. 111, pp. 329-338, 1960.
    Liu, X., Yang, J.K., “Development of Child Pedestrian Mathematical Models and Evaluation with Reconstruction of Car-Child Pedestrian Accidents,” Traffic Injury Prevention, 2003.
    LS-DYNA, “Keyword User’s Manual Version 971,” Livermore Software Technology Corporation, 2001.
    Mallory, A., Stammen, J., Meyerson, S., “Pedestrian GTR Testing of Current Vehicles,” 20th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 07-0313, 2007.
    Mizuno, Y., Ishikawa, H., “Summary of IHRA Pedestrian Safety WG Activities— Proposed Test Methods to Evaluate Pedestrian Protection Afforded by Passenger Cars,” 17th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 280, 2001.
    Mizuno, Y., “Summary of IHRA Pedestrian Safety WG Activities (2003)— Proposed Test Methods to Evaluate Pedestrian Protection Afforded by Passenger Cars,” 18th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 580, 2001.
    Mizuno, Y., “Summary of IHRA Pedestrian Safety WG Activities (2005) — Proposed Test Methods to Evaluate Pedestrian Protection Afforded by Passenger Cars,” 19th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 05-0138, 2005.
    Nagatomi, K., Hanayama, K., Ishizaka, T., Sasaki, S., Matsuda, K., “Development and Full-Scale Dummy Tests of a Pop-Up Hood System For Pedestrian Protection,” 19th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 05-0113, 2005.
    Neal-Sturgess, C.E., Carter, E., Hardy, R., Cuerden, R., Guerra, L., Yang, J., “APROSYS European In-Depth Pedestrian Database,” Innovations for Safety: Opportunities and Challenges, 2007.
    Okamoto, Y., Sugimoto, T., Enomoto, K., Kikuchi, J., “Pedestrian Head Impact Conditions Depending on the Vehicle Front Shape and Its Construction— Full Model Simulation,” Traffic Injury Prevention, 2003
    Otte, D., “Severity and Mechanism of Head Impacts in Car to Pedestrian Accidents,” International IRCOBI Conference on the Biomechanics of Impact, 1999,
    Paye, J., “Vehicle Hood Deployment Device for Pedestrian Protection,” United States Patent, Patent No. US 6,439,330 B1, 2002.
    Peten, M., “The World Report on Road Traffic Injury Prevention,” Geneva: World Health Organization, 2004.
    Pritz, H.B., Hassler, C.R., Herridge, J.T., Weis, E.B., “Experimental Study of Pedestrian Injury Minimization Through Vehicle Design,” 19th Stapp Car Crash Conference, Society of Automotive Engineers (SAE), Paper No. 751166, 1975.
    Pritz, H.B., “Comparison of the Dynamic Response of Anthropomorphic Test Devices and Human Anatomic Specimens in Experimental Pedestrian Impacts,” 22nd Stapp Car Crash Conference, Society of Automotive Engineers (SAE), Paper No. 780894, 1978.
    Sasaki, S., Nagatomi, K., “Vehicular Hood Device,” United States Patent, Patent No., US 6,554,093, 2003.
    Schuster, P.J., Staines, B., “Determination of Bumper Styling and Engineering Parameters to Reduce Pedestrian Leg Injuries,” Society of Automotive Engineers (SAE), Paper No. 980361, 1998.
    State, J.D., “The Abbreviated and the Comprehensive Research Injury Scales,” 13th Stapp Car Crash Conference, Society of Automotive Engineers (SAE), Paper No. 690810, 1969.
    UNECE, “Proposal to Develop a Global Technical Regulation Concerning the Protection of Pedestrian and Other Vulnerable Road Users in Collision with Vehicles,” http://www.unece.org/trans/main/welcwp29.htm, 2004.
    UNECE, “Pedestrian Traffic Accident Data,” http://www.unece.org/trans/main/welcwp29.htm, 2003.
    Wismans, J., “Design Tools: Human Body Modeling,” Vehicle Crashworthiness and Occupant Protection, pp. 227-268, 2004.
    Yang, K.J., “Injury Biomechanics in Car-Pedestrian Collisions: Development, Validation and Application of Human-Body Mathematical Models,” Doctoral thesis, Chalmers University of Technology, 1997.
    Yoshida, S., Matsuhashi, T., “Simulation of Car-Pedestrian Accident for Evaluate Car Structure,” 16th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 98-S10-W-18, 1998.
    Zanella, A., Butera, F., Gobetto, E., Ricerche, C., “Smart Bumper for Pedestrian Impact Recognition,” European Workshop on Smart Structures in Engineering and Technology (ASSET), 2002.
    Zellmer, H., Glaeser, K.-P., “The EEVC WG10 Head Impact Test Procedure in Practical Use,” 14th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 94-S7-O-03, 1994.

    下載圖示 校內:2009-07-30公開
    校外:2009-07-30公開
    QR CODE