| 研究生: |
陳瑞琴 Chen, Jui-Chin |
|---|---|
| 論文名稱: |
研磨液組成對銅/鉭化學-機械抛光電化學及表面化學特徵的影響 Effect of Slurry Composition on the Electrochemical and Surface Characteristics of Cu and Ta in Chemical-Mechanical Polishing |
| 指導教授: |
蔡文達
Tsai, W. T. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 174 |
| 中文關鍵詞: | X光光電子能譜術 、原子力顯微鏡 、化學-機械抛光 、銅 、鉭 、研磨液 、電化學 |
| 外文關鍵詞: | Chemical-Mechanical Polishing, CMP, Tantalum, Copper, AFM, XPS, Electrochemical, Slurry |
| 相關次數: | 點閱:119 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究利用表面化學成份分析、電化學性質的量測和表面型貌的觀察,探討研磨液組成對銅和鉭化學-機械抛光的研磨速率以及研磨後表面粗糙度的影響。
本研究所使用的研磨液組成為H2O2、檸檬酸和Al2O3研磨粒子;測試的狀態有旋轉(旋轉電極儀)、研磨(化學-機械抛光機台)以及靜置三種條件。當銅的測試狀態為旋轉,根據表面成份分析(XPS)和電化學性質的量測結果,在含0.0078 M檸檬酸的研磨液中,旋轉作用力會使得銅表面生成的氧化膜穩定性降低,而且轉速愈快,氧化膜的穩定性愈差。此外,添加不同濃度的H2O2於0.0078 M的檸檬酸溶液中,H2O2會促進銅氧化膜的生成,氧化膜的種類以CuO和Cu(OH)2為主,而且當H2O2濃度超過2 vol%以上,濃度的增加有助於氧化膜的穩定。
當銅的測試狀態為研磨,於含9 vol% H2O2 + 1 wt% Al2O3的研磨液中,銅的研磨速率約為51 nm/min,且研磨後的表面粗糙度由經800號砂紙研磨後的104 nm降至3 nm;添加0.0078 M的檸檬酸於上述研磨液中,銅的研磨速率提高至約為1045 nm/min,而且研磨後的粗糙度也維持在2 nm。研磨速率增加是因為檸檬酸錯合銅離子所造成;表面粗糙度降低的原因則是Al2O3粒子能加速表面凸起處的移除,以及H2O2能使銅的氧化膜於表面凹陷處生成,並且保護基材,減少化學侵蝕或是機械作用對它的損害所致。另外,提高檸檬酸濃度至0.5 M,研磨速率會提升至約5522 nm/min,研磨後的粗糙度也增加至約352 nm。
由鉭的研磨速率量測結果得知,添加Al2O3粒子於去離子水中,研磨速率隨粒子濃度的增加(1 ~ 15 wt%)而提高(2.6 ~ 118 nm/min);但再添加H2O2或檸檬酸於1 wt% Al2O3研磨液中,卻無法量得研磨速率。根據XPS和電化學性質的分析結果,這是由於H2O2或檸檬酸易使鉭的表面生成Ta2O5,而且欲移除Ta2O5相較於金屬鉭更加不易所致。此外,由AFM的量測結果可知,添加不同濃度的Al2O3粒子於去離子水或是9 vol% H2O2 + 0.01 M檸檬酸的研磨液中,當Al2O3粒子濃度超過10 wt% 後,研磨後表面粗糙度的平均值均非常接近Al2O3粒子的粒徑,約50 nm。
另外,銅/鉭可能因為同時曝露在研磨液中而發生金屬間的伽凡尼腐蝕,所以本研究亦探討氧化劑(H2O2、Fe(NO3)3和KIO3)和面積比例對銅/鉭伽凡尼行為的影響。添加不同的氧化劑於0.01 M Na2SO4 + 1 wt% Al2O3的研磨液中,由開路電位及伽凡尼電流的量測結果得知,不論於研磨或是靜置,在含H2O2或是KIO3的研磨液中,鉭均為銅/鉭電偶中的陽極;但是,在含KIO3的研磨液中所量得的鉭陽極電流密度值小於在含H2O2的研磨液中所量得的結果。當添加的氧化劑為Fe(NO3)3,銅/鉭電偶中的陽極則變為銅;而且在靜置下所量得的銅陽極電流密度值大於在研磨中所量得的結果。至於銅/鉭不同面積比例的影響,根據開路電位及伽凡尼電流的量測,當銅/鉭電偶中的鉭電極面積減少至原來面積的1/5倍,在含Fe(NO3)3的研磨液中,因為研磨之故,鉭會與銅發生極性轉換的現象;但是,在含H2O2或是KIO3的研磨液中,研磨並不會導致極性轉換現象的發生。
Abstract
This research was to investigate and explore how the slurry composition affects the removal rate and surface roughness of copper and tantalum. This accomplished research was through the analyses of the components of the surface composition, electrochemical measurement and observation of surface morphology.
The slurry compositions consisted H2O2, citric acid and Al2O3 particle, which was associated with three test conditions: rotation (Rotating Disk Electrode), abrasion (Chemical-Mechanical Polishing) and stationary as well. According to the surface analysis (XPS) and electrochemical test, the experiment result revealed the lower stability of the oxide film forming on the surface of Cu caused by higher rotating speed in the slurry with 0.0078 M citric acid when the test condition was rotation for Cu. Moreover, the addition of various concentration of H2O2 in 0.0078 M citric acid slurry promoted the oxide film which majority was CuO and Cu(OH)2 to form on the surface of Cu. The higher concentration of H2O2 solution raised the higher stability of the oxide film as the concentration was over than 2 vol%.
The removal rate of Cu was approximately 51 nm/min and the surface roughness of Cu decreased from 104 nm, which was ground with 800 grit SiC paper, to 3 nm after polishing in the abrasion test condition with 9 vol% H2O2 + 1 wt% Al2O3 slurry. The removal rate of Cu increased to 1045 nm/min and surface roughness of Cu stayed at around 2 nm after adding 0.0078 M citric acid into the same slurry above at same test condition. The increased removal rate was because of complex cupric ions caused by citric acid. Moreover, the surface roughness was lower because Al2O3 particle accelerated the removal rate at the convex area, and H2O2 produced the oxide film forming on the surface at the concave area to protect the substrate from chemical erosion and mechanical abrasion. Furthermore, the removal rate and the surface roughness increased to 5522 nm/min and 352 nm as the concentration of citric acid was increased 0.5 M in the above slurry, respectively.
The results of Ta removal rate indicated that the removal rate increased from 2.6 to 118 nm/min with the concentration of Al2O3 particle increasing from 1 to 15 wt% in the DI water. However, the removal rate was immeasurable when adding either H2O2 or citric acid or both in the 1 wt% Al2O3 slurry. The results based on XPS and electrochemical analyses revealed that H2O2 and citric acid promoted Ta2O5 forming on the surface and removing Ta2O5 was more difficult than removing Ta. In additional AFM test, the surface roughness of Ta after polishing was much closed to the diameter of Al2O3 particle which was approximately 50nm in the Al2O3 particle concentration over 10 wt% in the DI water or 9 vol% H2O2 + 0.01 M citric acid slurry.
The galvanic corrosion may occur between Cu and Ta when both metals were exposed to the slurry. Therefore, this study investigated the effect of oxidizer, namely H2O2, Fe(NO3)3 and KIO3, and area ratio on the galvanic behavior of the Cu/Ta couple as well. Ta was always the anode in the Cu/Ta coupling under CMP or static conditions according to the results of open circuit potential and galvanic current when different oxidizers (H2O2 and KIO3) added into 0.01 M Na2SO4 + 1 wt% Al2O3 slurry. However, the anodic current density of Ta in the slurry containing KIO3 was lower than that in the slurry containing H2O2. On the other hand, Cu was the anode in the Cu/Ta coupling and the anodic current density of Cu under static condition was higher than that during CMP when Fe(NO3)3 was added in the slurry. As for area ratio, the electric polarity of the Ta/Cu couple exchanged due to CMP in the slurry containing Fe(NO3)3 when the area size of Ta was diminished to a fifth part. Nevertheless, applying CMP on the coupling did not cause the exchange of electric polarity in the slurry with H2O2 or KIO3.
參考文獻
1. Stephen A. Campbell, The Science and Engineering of Microelectronic Fabrication, Oxford University Press, Inc., 1996 p. 411.
2. J. M. Steigerwald, S. P Murarka, R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, John Wiley & Sons, Inc., New York, 1997 p. 3.
3. J. M. Steigerwald, S. P Murarka, R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, John Wiley & Sons, Inc., New York, 1997 p. 4.
4. F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearson, M. B. Small, J. Electrochem. Soc., 138 (1991) 3460.
5. C. A. Chang, J. Appl. Phys. 67 (12) (1990) 7348-7350.
6. E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela, M. A. Nicolet, J. Appl. Phys. 70 (3) (1991) 1369-1373.
7. K. Holloway, P. M. Fryer, C. Cabral, Jr., J. M. E. Harper, P. J. Bailey, K. H. Kelleher, J. Appl. Phys. 71 (11) (1992) 5433-5444.
8. K. H. Min, K. C. Chun, K. B. Kim, J. Vac. Sci. Technol. B 14 (5) (1996) 3263-3269.
9. L. M. Cook, Journal of Non-Crystal Solids, 120 (1990) 152-171.
10. J. M. Steigerwald, S. P Murarka, R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, John Wiley & Sons, Inc., New York, 1997 p. 130-140.
11. 郭鴻曦, 鋁在化學機械抛光過程中之電化學行為研究, 博士論文, 國立成功大學材料科學及工程學系, 中華民國八十九年六月。
12. Stephen A. Campbell, The Science and Engineering of Microelectronic Fabrication, Oxford University Press, Inc., 1996 p. 167.
13. Stephen A. Campbell, The Science and Engineering of Microelectronic Fabrication, Oxford University Press, Inc., 1996 p. 299-300.
14. J. M. Steigerwald, S. P Murarka, R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, John Wiley & Sons, Inc., New York, 1997 p. 22-25.
15. S. P. Murarka, Mat. Res. Soc. Symp. Proc., 566 (2000) 3-11.
16. M. R. Oliver, Mat. Res. Soc. Symp. Proc., 566 (2000) 73-79.
17. W. G. America, R. Srinivasan, S. V. Babu, Mat. Res. Soc. Symp. Proc., 566 (2000) 13-18.
18. J.-G. Park, S.-H. Lee, H.-G. Kim, H.-D. Jeong, D.-K. Moon, Mat. Res. Soc. Symp. Proc., 566 (2000) 173-178.
19. Y. Li, S. Ramarajan, M. Hariharaputhiran, Y. S. Her, S. V. Babu, Mat. Res. Soc. Symp. Proc., 613 (2000) E2.4.1-E2.4.6.
20. N. Kawahashi, M. Hattori, Mat. Res. Soc. Symp. Proc., 671 (2001) M2.2.1-M2.2.8.
21. U. Mahajan, M. Bielmann, R. Singh, Mat. Res. Soc. Symp. Proc., 566 (2000) 27-32.
22. S. R. Machinski, K. A. Richardson, A. Dogariu, Mat. Res. Soc. Symp. Proc., 613 (2000) E6.1.1-E6.1.6.
23. S. H. Bae, J.-H. So, S.-M. Yang, D. H. Kim, Mat. Res. Soc. Symp. Proc., 613 (2000) E6.5.1-E6.5.6.
24. M. Hariharaputhiran, Y. Li, S. Ramarajan, S. V. Babu, Electrochem. Solid-State Lett. 3 (2) (2000) 95-98.
25. Y. Li, M. Hariharaputhiran, S. V. Babu, J. Mater. Res., 16(4) (2001) 1066-1073.
26. A. K. Babel, R. A. Mackay, Mat. Res. Soc. Symp. Proc., 566 (2000) 135-142.
27. N. Miyashita, S. Uekusa, T. Nishioka, S. Iwami, Mat. Res. Soc. Symp. Proc., 613 (2000) E5.3.1-E5.3.6.
28. B.-C. Lee, D. J. Duquette, R. J. Gutmann, Mat. Res. Soc. Symp. Proc., 671 (2001) M2.7.1-M2.7.12.
29. F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearson, M. B. Small, J. Electrochem. Soc., 138, (1991) 3460.
30. H.-S. Kuo, W.-T. Tsai, J. Electrochem. Soc., 147(1) (2000) 149-154.
31. S. Kondo, N. Sakuma, Y. Homma, N. Ohashi, PV 98-6, p. 195, The Electrochemical Society Proceedings Series, Pennington, NJ (1998).
32. R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neiynck, D. J. Duquette, S. P. Murarka, Thin Solid Film, 270, (1995) 596.
33. R. S. Juang, F. C. Wu, R. L. Tseng, Wat. Res., 33, (1999) 2403.
34. M. Hariharaputhiran, J. Zhang, S. Ramarajan, J. J. Keleher, Y. Li, S. V. Babu, J. Electrochem. Soc., 147(10) (2000) 3820-3826.
35. R. Youda, H. Nishihara, K. Aramaki, Corros. Sci., 28 (1) (1988) 87.
36. S. L. Cohen, V. A. Brusic, F. B. Kaufman, G. S. Frankel, S. Motakef, B. Rush, J. Vac. Sci. Technol. A, 8 (3) (1990) 2417.
37. A. T. Al-Hinai, K. Osseo-Asare, Electrochem. Solid-State Lett., 6 (5) (2003) B23.
38. S. Hymes, K. Smekalin, T. Brown, H. Yeung, M. Joffe, M. Banet, T. Park, T. Tugbawa, D. Boning, J. Nguyen, T. West, W. Sands, Mat. Res. Soc. Symp. Proc., 566 (2000) 211-216.
39. A. K. Sikder, I. M. Irfan, A. Kumar, A. Belyaev, S. Ostapenko, M. Calves, J. P. Harmon, J. M. Anthony, Mat. Res. Soc. Symp. Proc., 671 (2001) M1.8.1-M1.8.7.
40. A. Jindal, Y. Li, S. Narayanan, S. V. Babu, Mat. Res. Soc. Symp. Proc., 671 (2001) M4.10.1-M4.10.6.
41. S. Hegde, U. B. Patri, A. Jindal, S. V. Babu, Mat. Res. Soc. Symp. Proc., 767 (2003) 27-32.
42. D. R. Evans, M. R. Oliver, Mat. Res. Soc. Symp. Proc., 671 (2001) M1.4.1-M1.4.7.
43. C. M. Zettner, M. Yoda, Mat. Res. Soc. Symp. Proc., 671 (2001) M6.6.1-M6.6.6.
44. T. Nishioka, S. Iwami, T. Kawakami, Y. Tateyama, H. Ohtani, N. Miyashita, Mat. Res. Soc. Symp. Proc., 613 (2000) E1.5.1-E1.5.6.
45. H. E. Litvak, H. M. Tzng, Semiconductor International, July (1996) 259.
46. D. Zeidler, M. Plotner, K. Drescher, Microelectronic Engineering, 50 (2000) 411-416.
47. T. Laursen, M. Grief, Mat. Res. Soc. Symp. Proc., 671 (2001) M7.6.1-M7.6.6.
48. H. Yano, Y. Matsui, G. Minamihaba, N. Kawahashi, M. Hattori, Mat. Res. Soc. Symp. Proc., 671 (2001) M2.4.1-M2.4.5.
49. J. W. Lee, B. U. Yoon, S. Hah, J. T. Moon, Mat. Res. Soc. Symp. Proc., 671 (2001) M5.3.1-M5.3.5.
50. L. Zhong, J. Yang, K. Holland, J. Grillaert, K. Devriend, N. Heylen, M. Meuris, Mat. Res. Soc. Symp. Proc., 566 (2000) 115-120.
51. Y. Kamigata, Y. Kurata, K. Masuda, J. Amanokura, M. Yoshida, M. Hanazono, Mat. Res. Soc. Symp. Proc., 671 (2001) M1.3.1-M1.3.12.
52. K. S. Choi, R. Vacassy, N. Bassim, R. K. Singh, Mat. Res. Soc. Symp. Proc., 671 (2001) M5.8.1-M5.8.10.
53. A. Jindal, Y. Li, S. V. Babu, Mat. Res. Soc. Symp. Proc., 671 (2001) M6.8.1-M6.8.6.
54. A. Vijayakumar, T. Du, K. B. Sundaram, V. Desai, Mat. Res. Soc. Symp. Proc., 767 (2003) 251-256.
55. J.-W. Hsu, S.-Y. Chiu, Y.-L. Wang, B.-T. Dai, M.-S. Tsai, M.-S. Feng, H. Shih, J. Electrochem. Soc., 149 (3) (2002) G204-G208.
56. J. M. Steigerwald, R. Zirpoli, S. P. Muraka, D. Price, R. J. Gutmanm, J. Electrochem. Soc., 141 (10) (1994) 2842-2848.
57. D. Zeidler, Z. Stavreva, M. Plotner, K. Drescher, Microelectronic Engineering, 33 (1997) 259-265.
58. W. H. Huang, S. Raghavan, Y. Fang, L. Zhang, Mat. Res. Soc. Symp. Proc., 566 (2000) 161-166.
59. A. A Busnaina, N. Moumen, J. Piboontum, M. Guarrera, Mat. Res. Soc. Symp. Proc., 566 (2000) 247-252.
60. N. Miyashita, Y. Mase, J. Takayasu, Y. Minami, M. Kodera, M. Abe, T. Izumi, Mat. Res. Soc. Symp. Proc., 566 (2000) 253-260.
61. K. K. Christenson, C. Pizetti, Mat. Res. Soc. Symp. Proc., 566 (2000) 267-272.
62. K. Ryoo, B. Kang, Mat. Res. Soc. Symp. Proc., 671 (2001) M7.2.1-M7.2.6.
63. M. Shirakashi, K. Itoh, I. Katakabe, M. Kamezawa, Mat. Res. Soc. Symp. Proc., 613 (2000) E8.3.1-E8.3.6.
64. N. Miyashita, S. Uekusa, S. Seta, T. Nishioka, Mat. Res. Soc. Symp. Proc., 671 (2001) M5.7.1-M5.7.5.
65. M. Kodera, S. Uekusa, Y. Matsui, N. Miyashita, A. Shigeta, S. Takahashi, M. Kawai, H. Kawamoto, M. Tsujimura, Mat. Res. Soc. Symp. Proc., 767 (2003) 313-318.
66. M. Shirakashi, K. Itoh, I. Katakabe, M. Tsujimura, T. Saitoh, K. Yamada, N. Miyashita, M. Kodera, Y. Matsui, Mat. Res. Soc. Symp. Proc., 613 (2000) E5.4.1-E5.4.5.
67. J. M. Steigerwald, S. P Murarka, R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, John Wiley & Sons, Inc., New York, 1997 chapter 4.
68. W.-T. Tseng, Y. L. Wang, J. Electrochem. Soc., 144 (1997) L15.
69. W.-T. Tseng, J.-H. Chin, L.-C. Kang, J. Electrochem. Soc., 146 (5) (1999) 1952-1959.
70. C. Zhou, L. Shan, J. R. Hight, S. H. Ng, A. J. Paszkowski, J. Tichy, S. Danyluk, Mat. Res. Soc. Symp. Proc., 613 (2000) E7.1.1-E7.1.13.
71. D. R. Evans, Mat. Res. Soc. Symp. Proc., 767 (2003) 187-192.
72. P. Wrschka, J. Hernandez, Y. Hsu, T. S. Kuan, G. S. Oehrlein, H. J. Sun, D. A. Hansen, J. King, M. A. Fury, J. Electrochem. Soc., 146 (7) (1999) 2689-2696.
73. J. Hernandez, P. Wrschka, Y. Hsu, T. S. Kuan, G. S. Oehrlein, H. J. Sun, D. A. Hansen, J. King, M. A. Fury, J. Electrochem. Soc., 146 (12) (1999) 4647-4653.
74. Q. Luo, S. Ramarajan, S. V. Babu, Thin Solid Film, 335 (1998) 160-167.
75. S. Ramarajan, S. V. Babu, Mat. Res. Soc. Symp. Proc., 566 (2000) 149-154.
76. Z. Lu, S. V. Babu, E. Matijevic, Mat. Res. Soc. Symp. Proc., 767 (2003) 167-172.
77. A. Jindal, S. Hegde, S. V. Babu, Electrochem. Solid-State Lett., 5(7) (2002) G48-G50.
78. N. Chandrasekaran, T. Taylor, G. Sabde, Mat. Res. Soc. Symp. Proc., 767 (2003) 153-160.
79. S. Tamilmani, J. Shan, W. Huang, S. Raghavan, R. Small, C. Shang, B. Scott, Mat. Res. Soc. Symp. Proc., 767 (2003) 161-166.
80. X. Feng, Y.-S. Her, W. L. Zhang, J. Davis, E. Oswald, J. Lu, V. Bryg, S. Freeman, D. Gnizak, Mat. Res. Soc. Symp. Proc., 767 (2003) 173-183.
81. S.-H. Lee, Z. Lu, S. V. Babu, E. Matijevic, J. Mater. Res., 17(10) (Oct. 2002) 2744-2749.
82. T. Hara, T. Tomisawa, T. Kurosu, T. K. Doy, K. Sakai, Electrochem. Solid-State Lett., 2(7) (1999) 339-341.
83. C. Zhou, L. Shan, S. H. Ng, R. Hight, A. J. Paszkowski, S. Danyluk, Mat. Res. Soc. Symp. Proc., 671 (2001) M1.6.1-M1.6.7.
84. M. Bielmann, U. Mahajan, R. K. Singh, Mat. Res. Soc. Symp. Proc., 767 (2003) 103-108.
85. W. Choi, S.-M. Lee, R. K. Singh, Mat. Res. Soc. Symp. Proc., 671 (2001) M5.1.1-M5.1.6.
86. P. Beaud, D. Bouvet, P. Fazan, E. Jacquinot, H. Aoki, T. Aoki, Mat. Res. Soc. Symp. Proc., 767 (2003) 141-151.
87. W. Choi, S.-M. Lee, R. K. Singh, Mat. Res. Soc. Symp. Proc., 767 (2003) 63-68.
88. Z. Stavreva, D. Zeidler, M. Plotner, K. Drescher, Applied surface science, 108 (1997) 39-44.
89. H.-S. Kuo, W.-T. Tsai, J. Electrochem. Soc., 147(6) (2001) 2136-2142.
90. H.-S. Kuo, W.-T. Tsai, Materials Chemistry and Physics, 69 (2001) 53-61.
91. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, 2nd ed., NACE, (1974) Ch 2-Ch 3.
92. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, 2nd ed., NACE, (1974) p387-388.
93. J. M. Steigerwald, S. P. Murarka, R. J. Gutmann, D. J. Duquette, Materials Chemistry and Physics, 41 (1995) 217-228.
94. D. Ernur, S. Kondo, D. Shamiryan, K. Maex, Microelectronic Engineering 64 (2002) 117-124.
95. J. M. Steigerwald, S. P Murarka, R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, John Wiley & Sons, Inc., New York, (1997) Ch 5.1.3.
96. A. J. Bard, L. R. Faulkner, Electrochemical Methods-Fundamentals and Applications, 2nd, John Wiley & Sons, Inc., New York, (2001) p5.
97. D. A. Jones, Principles and Prevention of Corrosion, 2nd, Pretice-Hall, Inc., Upper Saddle River, NJ 07458, (1996) Ch 3.
98. M. Stern, A. L. Geary, J. Electrochem. Soc., 104(1) (1957) 56-63.
99. D. A. Jones, Principles and Prevention of Corrosion, 2nd, Pretice-Hall, Inc., Upper Saddle River, NJ 07458, (1996) Ch 6.
100. F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearson, M. B. Small, J. Electrochem. Soc., 138(11) (1991) 3460-3464.
101. M. Bielmann, U. Mahajan, R. K. Singh, P. Agarwal, S. Mischler, E. Rosser, D. Landolt, Mat. Res. Soc. Symp. Proc., 566 (2000) 97-101.
102. E. A. Kneer, C. Raghunath, S. Raghavan, J. S. Jeon, J. Electrochem. Soc., 143(12) (1996) 4095-4100.
103. D. J. Stein, D. Hetherington, T. Guilinger, J. L. Cecchi, J. Electrochem. Soc., 145(9) (1998) 3190-3196.
104. D. Tamboli, S. Seal, V. Desai, Mat. Res. Soc. Symp. Proc., 566 (2000) 89-95.
105. M. A. Fury, D. L. Scherber, M. A. Stell, MRS Bull., (Nov 1995) 61-64.
106. W. T. Tseng, J. Wu, Y. S. Chang, Mat. Res. Soc. Symp. Proc., 477 (1997) 125-130.
107. C. G. Kallingal, D. J. Duquette, S. P. Murarka, J. Electrochem. Soc., 145(6) (1998) 2074-2081.
108. J. M. Steigerwald, S. P. Murarka, J. Ho, R. J. Gutmann, D. J. Duquette, J. Vac. Sci. Technol. B, 13(6) (Nov/Dec 1995) 2215-2218.
109. R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, S. P. Murarka, Thin Solid Films 270 (1995) 596-600.
110. S. V. Babu, Y. Li, A. Jindal, JOM, (March 2001) 50-52.
111. M. Hariharaputhiran, J. Zhang, S. Ramarajan, J. J. Keleher, Y. Li, S. V. Babu, J. Electrochem. Soc., 147(10) (2000) 3820-3826.
112. J. Lu, J. E. Garland, C. M. Petite, S. V. Babu, D. Roy, Mat. Res. Soc. Symp. Proc., 767 (2003) 257-262.
113. J. W. Hsu, S. Y. Chiu, M. S. Tsai, B. T. Dai, M. S. Feng, H. C. Shih, J. Vac. Sci. Technol. B, 20(2) (Mar/Apr 2002) 608-612.
114. Y. Li, S. V. Babu, Electrochem. Solid-State Lett., 4(2) (2001) G20-G22.
115. M. T. Wang, M. S. Tsai, C. Liu, W. T. Tseng, T. C. Chang, L. J. Chen, M. C. Chen, Thin Solid Film, 308/309 (1997) 518-522.
116. Q. Luo, D. R. Campbell, S. V. Babu, Thin Solid Films, 311 (1997) 177-182.
117. S. Kondo, N. Sakuma, Y. Homma, N. Ohashi, PV 98-6, p. 195, The Electrochemical Society Proceedings Series, Pennington, NJ (1998).
118. S. Aksu, F. M. Doyle, J. Electrochem. Soc., 148(1) (2001) B51-B57.
119. S. Aksu, F. M. Doyle, J. Electrochem. Soc., 149(6) (2002) G352-G361.
120. S. Seal, S. C. Kuiry, B. Heinmen, Thin Solid Films, 423 (2003) 243-251.
121. J. Hernandez, P. Wrschka, G. S. Oehrlein, J. Electrochem. Soc., 148(7) (2001) G389-G397.
122. L. Zhang, S. Raghavan, S. Meikle, G. Hudson, J. Electrochem. Soc., 146(4) (1999) 1442-1447.
123. V. Gorantla, S. V. Babu, Mat. Res. Soc. Symp. Proc., 767 (2003) 279-284.
124. T. C. Hu, S. Y. Chiu, B. T. Dai, M. S. Tsai, I.-C. Tung, M. S. Feng, Materials Chemistry and Physics, 61 (1999) 169-171.
125. R. J. Motekaitis, A. E. Martell, Inorganic Chemistry, 23(1) (1984) 18-23.
126. E. E. Kiss, M. Jezowska-Bojczuk, T. Kiss, J. Coord. Chem., 40(1-2) (1996) 157-166.
127. S. Ramarajan, Y. Li, M. Hariharaputhiran, Y.-S. Her, S. V. Babu, Electrochem. Solid-State Lett., 3(5) (2000) 232-234.
128. S. C. Kuiry, S. Seal, W. Fei, J. Ramsdell, V. H. Desai, Y. Li, S. V. Babu, B. Wood, J. Electrochem. Soc., 150(1) (2003) C36-43.
129. D. Zeidler, Z. Stavreva, M. Plotner, K. Drescher, Microelectronic Engineering 37/38 (1997) 237-243.
130. S. Kondo, N. Sakuma, Y. Homma, N. Ohashi, Jpn. J. Appl. Phys., 39(11) Part 1 (2000) 6216-6222.
131. International standard ISO 4287 (1997) 12.
132. J. Itoh, T. Sasaki, T. Ohtsuka, Corros. Sci., 42, (2000) 1539.
133. Y. Feng, W. K. Teo, K. S. Siow, K. L. Tan, A. K. Hsieh, Corros. Sci., 38, (1996) 369.
134. J. F. Moulder, J. Chastain, R. C. King, Handbook of X-Ray Photoelectron Spectroscopy Physical Electronics & Minn. Eden Prairie, 1995, p. 171.
135. E. Atanassova, T. Dimitrova, J. Koprinarova, Applied Surface Science, 84 (1995) 193-202.
136. E. Atanassova, D. Spassov, Applied Surface Science, 135 (1998) 71-82.
137. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, 2nd ed., NACE, (1974) 251-255.