研究生: |
王榮凱 Wang, Rong-Kai |
---|---|
論文名稱: |
建構一套心電圖、肺音量測系統以分析運動前後之生理參數 Construction of Electrocardiography and Lung Sound Measurement System to Analysis the Physiological Parameters of Before and After Exercise |
指導教授: |
楊明興
Young, Ming-Shing |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 肺音 、心率變異度 、心電圖 、頻譜分析 |
外文關鍵詞: | ECG, Lung Sound, Heart Rate Variability, Spectrum Analysis |
相關次數: | 點閱:83 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
心電圖與肺音,皆是非侵入性的量測方式,可分別用來評估心血管疾病及肺疾病。行政院衛生署公佈的2006年國人十大死因中,心臟與肺疾病繼續列名其中,而且一直居高不下。
近年來,新聞媒體常提及一些人在運動時突然猝死的消息,主要因素與心肺功能有關聯。因此,本論文主要針對代表心肺功能表現的心電圖及肺音等生理訊號,建構一套量測系統來分析運動前後之生理參數,並且探討運動對心肺功能的影響。
經實驗後,由分析出的參數結果可看出,無論是在低強度的快走運動或較高強度的慢跑運動都可提高心率變異度(運動前,LFn:0.716±0.038 n.u.,HFn:0.284±0.038 n.u.,LF/HF:2.581±0.471;快走後,LFn:0.604±0.034 n.u.,HFn:0.396±0.034 n.u.,LF/HF:1.543±0.226;慢跑後,LFn:0.546±0.047 n.u.,HFn:0.451±0.046 n.u.,LF/HF:1.232±0.252)與呼吸能力(運動前,PF:401.4±17.671 Hz,Q25:347.3±31.952 Hz,Q50:393.5±20.522 Hz,Q75:434.8±13.265 Hz;快走後,PF:413±8.641 Hz,Q25:370.3±33.052 Hz,Q50:412.4±20.029 Hz,Q75:451.8±9.508 Hz;慢跑後,PF:430.3±16.813 Hz,Q25:391.5±34.04 Hz,Q50:434.6±22.56 Hz,Q75:483.6±9.868 Hz)。
Electrocardiogram and lung sound, are non-invasive measurement method to estimate cardiovascular and lung diseases. According to the report announced by Department of Health, Executive Yuan, R.O.C. (Taiwan), heart and lung diseases are both in the list of the top ten leading causes of death in 2006.
In recent years, newspapers and magazines often reported the news about sudden death when some people were in the exercise. Therefore, this thesis proposed a measurement system for measuring electrocardiogram and lung sound signals which represent the performance of heart and lung function. The proposed system can be used to analyze the variation of the related physiological parameters before and after exercise. Based on the measured data, we can study the effect of exercise on the heart and lung function.
The experimental results show that both in low-intensity campaign of brisk walking or a higher-intensity campaign of jogging can raise heart rate variability (Before exercise, LFn: 0.716±0.038 n.u., HFn: 0.284±0.038 n.u., LF/HF: 2.581±0.471; After brisk walking, LFn: 0.604±0.034 n.u., HFn: 0.396±0.034 n.u., LF/HF: 1.543±0.226; After jogging, LFn: 0.546±0.047 n.u., HFn: 0.451±0.046 n.u., LF/HF: 1.232±0.252) and respiratory capacity (Before exercise, PF: 401.4±17.671 Hz, Q25: 347.3±31.952 Hz, Q50: 393.5±20.522 Hz, Q75: 434.8±13.265 Hz; After brisk walking, PF: 413±8.641 Hz, Q25: 370.3±33.052 Hz, Q50: 412.4±20.029 Hz, Q75: 451.8±9.508 Hz; After jogging, PF: 430.3±16.813 Hz, Q25: 391.5±34.04 Hz, Q50: 434.6±22.56 Hz, Q75: 483.6±9.868 Hz).
[1] W. C. Levy, M. D. Cerqueira, G. D. Harp, K.-A. Johannessen, I. B. Abrass, R. S. Schwarte, and J. R. Stratton, "Effect of endurance exercise training on heart rate variability at rest in healthy young and older men," American Journal of Cardiology, vol. 82, pp. 1236-1241, Nov. 15 1998.
[2] G. R. H. Sandercock, P. D. Bromley, and D. A. Brodie, "Effects of exercise on heart rate variability: Inferences from meta-analysis," Medicine & Science in Sports & Exercise, vol. 37, pp. 433-439, Mar 2005.
[3] R. Jurca, T. S. Church, G. M. Morss, A. N. Jordan, and C. P. Earnest, "Eight weeks of moderate-intensity exercise training increases heart rate variability in sedentary postmenopausal women," American Heart Journal, vol. 147, May 2004.
[4] K. P. Davy, N. L. Miniclier, J. A. Taylor, E. T. Stevenson, and D. R. Seals, "Elevated heart rate variability in physically active postmenopausal women: A cardioprotective effect?," American Journal of Physiology, vol. 271, pp. H455-H460, 1996.
[5] K. P. Davy, C. A. Desouza, P. P. Jones, and D. R. Seals, "Elevated heart rate variability in physically active young and older adult women," Clinical Science (London), vol. 94, pp. 579-584, June 1998.
[6] F. Dalmay, M. T. Antonini, P. Marquet, and R. Menier, "Acoustic properties of the normal chest," European Respiratory Journal, vol. 8, pp. 1761-1769, 1995.
[7] 呂萍, 閔一建, 錢鐵群, "運動前後肺音信號的提取與頻譜分析," 陜西師範大學學報, 第33卷, 第3期, 62-64頁, 2005年9月.
[8] 呂萍, 閔一建, 錢鐵群, "運動前後脈搏聲和肺音信號的同步拾取與特徵研究," 廣州體育學院學報, 第25卷, 第5期, 123-126頁, 2005年9月.
[9] J. R. Hampton , "The ECG MADE EASY," 2003, 6th ed.
[10] D. Dubin, "Rapid interpretation of EKG's: a programmed course," 2000, 5th ed.
[11] J. J. Smith and J. P. Kampine, 杜厚成譯, "心臟循環生理學," 合記圖書出版社, 民國74年.
[12] B. W. Hyndman and J. R. Gregory, "Spectral Analysis of Sinus Arrhythmia During Mental Loading," Ergonomics, vol. 18, pp. 255-270, 1975.
[13] N. Task Force Of The European Society Of Cardiology and The and E. American Society Of Pacing And, "Heart rate variability: Standards of measurement, physiological interpretation, and clinical use," European Heart Journal, vol. 17, pp. 354-381, 1996.
[14] D. E. McMillan, "Interpreting heart rate variability sleep/wake patterns in cardiac patient," Journal of Cardiovascular Nursing, vol.17, pp. 69-81, 2002.
[15] J. McNames and M. Aboy, "Reliability and accuracy of heart rate variability metrics versus ECG segment duration," Medical & Biological Engineering & Computing, vol. 44, pp. 747-756, Sep 2006.
[16] H. Pasterkamp, S. S. Kraman, and G. R. Wodicka, "Respiratory sounds: Advances beyond the stethoscope," American Journal of Respiratory and Critical Care Medicine, vol. 156, pp. 974-987, 1997.
[17] J. F. Murray and J. A. Nadel, "Textbook of Respiratory Medicine," Philadelphia: W. B. Saunders, 1994.
[18] V. A. McKusick, J. T. Jenkins, and G. N. Webb, "The acoustic basis of the chest examination: studies by means of sound spectrography," American Review of Tuberculosis, vol.72, pp. 12-34, 1955.
[19] P. Forgacs, "Lung sounds," British Journal of Diseases of the Chest, vol. 63, pp. 1-12, 1969.
[20] M. Mahagnah and N. Gavriely, "Repeatability of measurements of normal lung sounds," American Journal of Respiratory and Critical Care Medicine, vol. 149, pp. 477-481, 1994.
[21] G. Charbonneau, J. L. Racineux, M. Sudraud, and E. Tuchais, "An Accurate Recording System and Its Use in Breath Sounds Spectral Analysis," Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 55, pp. 1120-1127, 1983.
[22] D. Wobschall, "Circuit Design for Electronic Instrumentation: Analog and Digital Devices from Sensor to Display," New York: McGraw-Hill, 1979.
[23] 紀國瑞, "數位聽診器之原型," 國立中央大學電機工程學系碩士論文, 中華民國九十四年七月.
[24] 惠汝生, "LabVIEW 8.X圖控程式應用," 全華, 台北市, 2006.
[25] N. Gavriely, Y. Palti, G. Alroy, and J. B. Grotberg, "Measurement and Theory of Wheezing Breath Sounds," Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 57, pp. 481-492, 1984.
[26] N. Gavriely, Y. Palti, and G. Alroy, "Spectral Characteristics of Normal Breath Sounds," Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 50, pp. 307-314, 1981.
[27] 辛曉峰, 殷凱生, 黃小平, "肺音錄取和頻譜分析系統的建立及其應用," 中國生物醫學工程學報, 第19卷, 第2期, 236-239頁, 2000年6月.
[28] M. Virtanen, M. Kahonen, T. Nieminen, P. Karjalainen, M. Tarvainen, T. Lehtimaki, R. Lehtinen, K. Nikus, T. Koobi, M. Niemi, K. Niemela, V. Turjanmaa, J. Malmivuo, and J. Viik, "Heart rate variability derived from exercise ECG in the detection of coronary artery disease," Physiological Measurement, vol. 28, pp. 1189-1200, Oct 2007.
[29] M. Saito and Y. Nakamura, "Cardiac autonomic control and muscle sympathetic nerve activity during dynamic exercise," Japanese Journal of Physiology, vol. 45, pp. 961-977, 1995 1995.
[30] Y. Arai, J. P. Saul, P. Albrecht, L. H. Hartley, L. S. Lilly, R. J. Cohen, and W. S. Colucci, "Modulation of Cardiac Autonomic Activity During and Immediately after Exercise," American Journal of Physiology, vol. 256, pp. H132-H141, 1989.
[31] R. Perini, C. Orizio, G. Baselli, S. Cerutti, and A. Veicsteinas, "The Influence of Exercise Intensity on the Power Spectrum of Heart Rate Variability," European Journal of Applied Physiology and Occupational Physiology, vol. 61, pp. 143-148, 1990.
[32] 鐘運健, 劉冬梅, 鄭松波, "力竭運動後的心率變異性RRI間期頻譜密度分析, " 南京醫科大學學報, 第26卷, 第6期, 447-449頁, 2006年6月.