| 研究生: |
陳三木 Chen, San-Mu |
|---|---|
| 論文名稱: |
架空輸電線路雷擊閃絡之防止對策 Preventive Strategies of the Lightning Flashover in Overhead Transmission Line |
| 指導教授: |
陳建富
Chen, Jiann-Fuh 林瑞禮 Lin, Ray-Lee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 電磁暫態程式 、逆閃絡 、線路避雷器 、鐵塔模型 |
| 外文關鍵詞: | Line Arrester, Tower Model, EMTP, Back Flashover |
| 相關次數: | 點閱:90 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是利用三種不同的鐵塔模型做架空輸電線路雷擊閃絡之分析。當鐵塔頂端遭雷擊中時,鐵塔的電壓會因不同塔腳電阻、雷擊電流峰值和雷擊電流波頭值而造成不同的電壓升,此時礙子兩端電壓若超過閃絡電壓,會形成逆閃絡現象,而造成線路接地故障,使系統電壓產生驟降。本論文以台南科學園區內的南科-三竹161kV輸電線路為例,藉由EMTP軟體做模擬分析,並利用降低塔腳電阻、架設架空地線和裝設線路避雷器等做為防雷對策,在文中均有介紹和模擬,而這些對策確實可減少發生雷擊事故的機率;再者,在鐵塔各分段裝設並聯電容,以降低鐵塔電壓上升,可有效減少雷擊閃絡事故。
This thesis proposes a method to analyze the lightning flashover in overhead transmission line. During this study, three kinds of tower models are used to discuss the phenomenon of lightning flashovers. To obtain a more general inference for flashover, the variables, including tower footing resistance, lightning current, the front of the current surge, are also weighed in to research into the causes of tower’s voltage rise. Moreover, in order to prove these contentions, the 161kV overhead transmission line between the Nanke E/S and the San-Chu D/S in Tainan Science Park was used as simulating example, according to theory and simulations by EMTP, besides fitting the overhead ground wire and the line arrester, reducing the footing resistance of the tower can also decrease the probability of lightning accident. Furthermore, installing parallel capacitors with multistory tower are effectively for reducing the incidents of the lightning flashover.
[1]江榮城,“電力品質實務(二)”,全華,台北市,pp.9.6-9.19,2002.6。
[2]“台電機電事故統計資料”,台電公司電力調度處與供電處,1990~2000。
[3]C. A. Jordan, “Lightning Computation for Transmission Lines with Overhead Ground Wire,” General Electric Review, Vol.37, pp.180-186, 1934.
[4]C. F. Wagner, “A New Approach to Calculation of Lighting Performance of Transmission Lines,” AIEE Transactions, Vol 75, pp.1233- 1256, 1956.
[5]M. A. Sargent, and M. Darveniza, “Tower Surge Impedance,” IEEE Transaction on Power Apparatus and Systems, vol. PAS-88, no. 5, pp. 680-687, 1969.
[6]T. Hara, O. Yamamoto, M. Hayashi, and C. Uenosono, “Empirical Formulas of Surge Impedance for Single and Multiple Vertical Cylinder,” IEE Japan Transactions, Vol. 110, pp.129-136, 1990.
[7]A. Ametani, Y. Kasa, J. Sawada, A. Mochizuki, and T. Yamada, “Frequency-Dependent Impedance of Vertical Conductors and a Multiconductor Tower Model,” IEE Proceedings - Generation, Transmission and Distribution, Vol. 141, No. 4, July 1994.
[8]A. Ametani, and T. Kawamura, “A Method of a Lightning Surge Analysis Recommended in Japan Using EMTP,” IEEE Transactions on Power Delivery, Vol. 20, No. 2, April 2005.
[9]T. Ueda, T. Ito, H. Watanabe, T. Funabashi, and A. Ametani, “A Comparison between Two Tower Models for Lightning Surge Analysis of 77kV System,” International Conference on Power System Technology, Vol. 1, pp.433 – 437, 4-7 December 2000.
[10]T. Ito, T. Ueda, H. Watanabe, T. Funabashi, and A. Ametani, “Lightning Flashovers on 77-kV Systems: Observed Voltage Bias Effects and Analysis,” IEEE Transactions on Power Delivery, Vol.18, No.2, April 2003.
[11]M. Ishii, T. Kawamura, T. Kouno, E. Ohsaki, K. Shiokawa, K. Murotani, and T. Higuchi, “Multistory Transmission Tower Model for Lightning Surge Analysis,” IEEE Transactions on Power Delivery, Vol. 6, pp.1327–1335, July 1991.
[12]T. Yamada, A. Mochizuki, J. Sawada, E. Zaima, T. Kawamura, A. Ametani, M. Ishi, and S. Kato, “Experimental Evaluation of a UHV Tower Model for Lightning Surge Analysis,” IEEE Transactions on Power Delivery, Vol. 10, pp.393–402, January 1995.
[13]Y. Baba, and M. Ishii, “Numerical Electromagnetic Field Analysis on Lightning Surge Response of Tower with Shield Wire,” IEEE Transactions on Power Delivery, Vol. 15, pp.1010-1015, July 2000.
[14]Y. Matsumoto, O. Sakuma, K. Shinjo, M. Saiki, T. Wakai, T. Sakai, H. Nagasaka, H. Motoyama, and M. Ishii, “Measurement of Lightning Surges on Test Transmission Line Equipped with Arresters Struck by Natural and Triggered Lightning,” IEEE Transactions on Power Delivery, Vol. 11, pp.996–1002, April 1991.
[15]H. Motoyama, K. Shinjo, Y. Matsumoto, and N. Itamoto, “Observation and Analysis of Multiphase Back Flashover on the Okushishiku Test Transmission Line Caused by Winter Lightning,” IEEE Transactions on Power Delivery, Vol. 13, pp.1391–1398, October 1998.
[16]M. Kawai, “Studies of the Surge Response on a Transmission Line Tower,” IEEE Transactions, Vol.PAS-83, pp.30-34, January 1964.
[17]IEEE Std 998-1996, “IEEE Guide for Direct Lightning Stroke Shielding of Substations”.
[18]顏世雄,“高電壓工程”,新學識,台北市, pp.2-19-34, pp.8-30-47,1997.9。
[19]M. S. Naidu, V. Kamaraju, “High Voltage Enineering,Second Edition,” McGraw-Hill, pp.226-251, 2002.
[20]A. Greenwood, “Electrical Transients in Power System, Second Edition,” Wiley-Interscince, USA, pp.463-554, 1991.
[21]台電輸電工程作業手冊。
[22]曲毅民, “輸配電學”,欣技,高雄市,pp.11.4-12.17, 1987.12。
[23]陳明詔, “輸電線雷害防止對策”, 台電工程月刊,466期, pp.17-20,1987.6。
[24]IEEE Std 1243-1997, “IEEE Guide for Improving the Lightning Performance of Transmission Lines”.
[25]IEEE Std 1410™-2004, “IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines(2004)”.
[26]台灣電力公司, “2003年台灣地區落雷偵測資料完成報告”,2003。
[27]江榮城,林水秀,莊坤山,”避雷器設計”,台電工程月刊,654期, pp10-137,2003.2。
[28]梁志堅,”雷擊分析與防護”,電機技師雙月刊,86期, pp.26-49,2001.4。
[29]K. R. Demarest, “Engineering Electromagnetics,” Prentice Hall , Inc., USA, pp.642, 1998.
[30]陳錫桓, “電磁學”,建宏,台北市, pp.297-335,1995.3。
[31]J. D. Glover, and M. Sarma, “Power System Analysis And Design, and Second Edition,” PWS, Boston, pp.463-491,1994.
[32]S. Cho, S. H. Kim, D. L. Kim, K. H. Im, H. S. Yang, D. H. Kim, and W. M. Jung, “Calculation of Alternating Current Distribution on the Current Lead for HTS Power Cable,” IEEE Transactions on Applied Superconductivity, Vol. 14, Issue 2, pp.662 - 665, June 2004.
[33]N. O. Sadiku, “Elements of Electromagnetics, Third Edition,” Oxford University Press, New York, pp.336-347,2001.
[34]H. Knoepfel, “Pulsed High Magnetic Fields,” North-Holland, Amsterdam, pp.312-324, 1970.
[35]顏世雄, “接地工程”,驫禾文化,台北, pp.80-105,2004.4。
[36]L. Yu, “Quick Evaluation of Voltage Surge in Electrical Power Systems,” IEEE Transactions on Industry Applications, Vol. 31, No. 2, pp.379-383, March 1995.
[37]H. Kr. Hoidalen, “ATPDraw for Windows 3.1x/95/NT version 1.0 User’s manual,” November 1998.
[38]I. M. Dudurych, T. J. Gallagher, J. Corbett, and M. Val Escudero, “EMTP Analysis of the Lightning Performance of a HV Transmission Line,” IEE Transm. Distrib., Vol.150, pp.501-506,2003.
[39]J. F. Ren, J. D. Duan, B. H. Zhang, and P. Li, “Identification of Lightning Disturbance in Ultra-High-Speed Transmission Line Protection,” 2005 IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific, 15-18,pp.1-5, August 2005.
[40]“架空輸電線路準則”,台灣電力公司,2002。
[41]王瑋民, 陳建富, “台南科學園區鄰近線路遭雷擊導致電壓驟降分析與防制”, 台電綜合研究所, 2003.11。
[42]陳建富,王瑋民,“線路雷擊模型參數對南科電壓驟降影響及保護協調分析”,台電94年度研究報告, 2005.10。
[43]J. R. Marti, L. Marti, and H. W. Dommel, “Traiisinissiori Line Models for Steady- State and Transients Analysis,” Athens Power Tech, 1993. APT 93. Proceedings. Joint International Power Conference, Vol. 2, pp.744 – 750, September 5-8, 1993.
[44]A. J. Eriksson, “The Incidence of Lightning Strikes to Power Lines,”IEEE Transactions on Power Delivery, Vol. 2, pp.859-870, July 1987.