簡易檢索 / 詳目顯示

研究生: 陳三木
Chen, San-Mu
論文名稱: 架空輸電線路雷擊閃絡之防止對策
Preventive Strategies of the Lightning Flashover in Overhead Transmission Line
指導教授: 陳建富
Chen, Jiann-Fuh
林瑞禮
Lin, Ray-Lee
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 101
中文關鍵詞: 電磁暫態程式逆閃絡線路避雷器鐵塔模型
外文關鍵詞: Line Arrester, Tower Model, EMTP, Back Flashover
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是利用三種不同的鐵塔模型做架空輸電線路雷擊閃絡之分析。當鐵塔頂端遭雷擊中時,鐵塔的電壓會因不同塔腳電阻、雷擊電流峰值和雷擊電流波頭值而造成不同的電壓升,此時礙子兩端電壓若超過閃絡電壓,會形成逆閃絡現象,而造成線路接地故障,使系統電壓產生驟降。本論文以台南科學園區內的南科-三竹161kV輸電線路為例,藉由EMTP軟體做模擬分析,並利用降低塔腳電阻、架設架空地線和裝設線路避雷器等做為防雷對策,在文中均有介紹和模擬,而這些對策確實可減少發生雷擊事故的機率;再者,在鐵塔各分段裝設並聯電容,以降低鐵塔電壓上升,可有效減少雷擊閃絡事故。

    This thesis proposes a method to analyze the lightning flashover in overhead transmission line. During this study, three kinds of tower models are used to discuss the phenomenon of lightning flashovers. To obtain a more general inference for flashover, the variables, including tower footing resistance, lightning current, the front of the current surge, are also weighed in to research into the causes of tower’s voltage rise. Moreover, in order to prove these contentions, the 161kV overhead transmission line between the Nanke E/S and the San-Chu D/S in Tainan Science Park was used as simulating example, according to theory and simulations by EMTP, besides fitting the overhead ground wire and the line arrester, reducing the footing resistance of the tower can also decrease the probability of lightning accident. Furthermore, installing parallel capacitors with multistory tower are effectively for reducing the incidents of the lightning flashover.

    中文摘要 I 英文摘要 II 誌 謝 III 目 錄 IV 圖目錄 VII 表目錄 XI 符號表 XII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 章節概述 2 第二章 雷擊對輸電線路之影響 3 2.1 雷擊現象 3 2.1.1 雷雲電荷分佈 3 2.1.2 雷擊的形成 4 2.2 雷擊波形 7 2.3 輸電線雷害 9 2.3.1 感應雷擊 9 2.3.2 直接雷擊 9 2.3.3 逆閃絡 10 2.4 雷擊機率 12 2.5 輸電線路雷害的防止對策 13 2.5.1 架空地線裝設 14 2.5.2 差絕緣設計 15 2.5.3 避雷器裝設 18 2.5.4 輸電鐵塔加裝電容器 21 第三章 突波阻抗與鐵塔參數 30 3.1 突波阻抗定義 30 3.1.1 單相輸電線路 30 3.1.2 無損耗線路 32 3.2 突波之作用 34 3.3 鐵塔之突波阻抗 37 3.3.1 單一導體模型 37 3.3.2 多層鐵塔模型 39 3.3.3 161 kV雙廻路輸電鐵塔模型 44 3.3.4 161 kV四廻路輸電鐵塔模型 47 第四章 模型建立與分析條件 50 4.1 模擬軟體 50 4.2 系統架構 50 4.3 模型選用 53 4.3.1 電源模型 53 4.3.2 架空輸電線模型 54 4.3.3 鐵塔模型 54 4.3.4 雷擊突波電流源 54 4.3.5 避雷器模型 54 4.4 分析條件 56 第五章 模擬結果與討論 58 5.1 雷擊點和塔距不同之模擬結果 58 5.2 不同雷擊電流峰值對礙子兩端電壓之模擬 62 5.3 鐵塔塔頂遭雷擊時對不同塔腳電阻值之模擬 64 5.3.1 不同塔腳電阻值對礙子兩端電壓之模擬 64 5.3.2 塔腳電阻值對引發礙子閃絡的雷擊電流大小之模擬 69 5.4 雷擊電流波頭時間對引發礙子閃絡的雷擊電流大小之模擬 69 5.5 裝設避雷器後之模擬 74 5.6 鐵塔橫桿間裝設電容器後之模擬 78 5.6.1 單一輸電鐵塔 78 5.6.2 實際輸電線路模型 79 5.7 綜合討論 85 第六章 結論與未來研究方向 87 6.1 結論 87 6.2 未來研究方向 87 參考文獻 89 附錄表A 不同地區的雷擊日數與對地閃絡密度之關係 94 附錄圖A 台灣地區之落雷天數及落雷次數圖 94 作者簡介 101

    [1]江榮城,“電力品質實務(二)”,全華,台北市,pp.9.6-9.19,2002.6。
    [2]“台電機電事故統計資料”,台電公司電力調度處與供電處,1990~2000。
    [3]C. A. Jordan, “Lightning Computation for Transmission Lines with Overhead Ground Wire,” General Electric Review, Vol.37, pp.180-186, 1934.
    [4]C. F. Wagner, “A New Approach to Calculation of Lighting Performance of Transmission Lines,” AIEE Transactions, Vol 75, pp.1233- 1256, 1956.
    [5]M. A. Sargent, and M. Darveniza, “Tower Surge Impedance,” IEEE Transaction on Power Apparatus and Systems, vol. PAS-88, no. 5, pp. 680-687, 1969.
    [6]T. Hara, O. Yamamoto, M. Hayashi, and C. Uenosono, “Empirical Formulas of Surge Impedance for Single and Multiple Vertical Cylinder,” IEE Japan Transactions, Vol. 110, pp.129-136, 1990.
    [7]A. Ametani, Y. Kasa, J. Sawada, A. Mochizuki, and T. Yamada, “Frequency-Dependent Impedance of Vertical Conductors and a Multiconductor Tower Model,” IEE Proceedings - Generation, Transmission and Distribution, Vol. 141, No. 4, July 1994.
    [8]A. Ametani, and T. Kawamura, “A Method of a Lightning Surge Analysis Recommended in Japan Using EMTP,” IEEE Transactions on Power Delivery, Vol. 20, No. 2, April 2005.
    [9]T. Ueda, T. Ito, H. Watanabe, T. Funabashi, and A. Ametani, “A Comparison between Two Tower Models for Lightning Surge Analysis of 77kV System,” International Conference on Power System Technology, Vol. 1, pp.433 – 437, 4-7 December 2000.
    [10]T. Ito, T. Ueda, H. Watanabe, T. Funabashi, and A. Ametani, “Lightning Flashovers on 77-kV Systems: Observed Voltage Bias Effects and Analysis,” IEEE Transactions on Power Delivery, Vol.18, No.2, April 2003.
    [11]M. Ishii, T. Kawamura, T. Kouno, E. Ohsaki, K. Shiokawa, K. Murotani, and T. Higuchi, “Multistory Transmission Tower Model for Lightning Surge Analysis,” IEEE Transactions on Power Delivery, Vol. 6, pp.1327–1335, July 1991.
    [12]T. Yamada, A. Mochizuki, J. Sawada, E. Zaima, T. Kawamura, A. Ametani, M. Ishi, and S. Kato, “Experimental Evaluation of a UHV Tower Model for Lightning Surge Analysis,” IEEE Transactions on Power Delivery, Vol. 10, pp.393–402, January 1995.
    [13]Y. Baba, and M. Ishii, “Numerical Electromagnetic Field Analysis on Lightning Surge Response of Tower with Shield Wire,” IEEE Transactions on Power Delivery, Vol. 15, pp.1010-1015, July 2000.
    [14]Y. Matsumoto, O. Sakuma, K. Shinjo, M. Saiki, T. Wakai, T. Sakai, H. Nagasaka, H. Motoyama, and M. Ishii, “Measurement of Lightning Surges on Test Transmission Line Equipped with Arresters Struck by Natural and Triggered Lightning,” IEEE Transactions on Power Delivery, Vol. 11, pp.996–1002, April 1991.
    [15]H. Motoyama, K. Shinjo, Y. Matsumoto, and N. Itamoto, “Observation and Analysis of Multiphase Back Flashover on the Okushishiku Test Transmission Line Caused by Winter Lightning,” IEEE Transactions on Power Delivery, Vol. 13, pp.1391–1398, October 1998.
    [16]M. Kawai, “Studies of the Surge Response on a Transmission Line Tower,” IEEE Transactions, Vol.PAS-83, pp.30-34, January 1964.
    [17]IEEE Std 998-1996, “IEEE Guide for Direct Lightning Stroke Shielding of Substations”.
    [18]顏世雄,“高電壓工程”,新學識,台北市, pp.2-19-34, pp.8-30-47,1997.9。
    [19]M. S. Naidu, V. Kamaraju, “High Voltage Enineering,Second Edition,” McGraw-Hill, pp.226-251, 2002.
    [20]A. Greenwood, “Electrical Transients in Power System, Second Edition,” Wiley-Interscince, USA, pp.463-554, 1991.
    [21]台電輸電工程作業手冊。
    [22]曲毅民, “輸配電學”,欣技,高雄市,pp.11.4-12.17, 1987.12。
    [23]陳明詔, “輸電線雷害防止對策”, 台電工程月刊,466期, pp.17-20,1987.6。
    [24]IEEE Std 1243-1997, “IEEE Guide for Improving the Lightning Performance of Transmission Lines”.
    [25]IEEE Std 1410™-2004, “IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines(2004)”.
    [26]台灣電力公司, “2003年台灣地區落雷偵測資料完成報告”,2003。
    [27]江榮城,林水秀,莊坤山,”避雷器設計”,台電工程月刊,654期, pp10-137,2003.2。
    [28]梁志堅,”雷擊分析與防護”,電機技師雙月刊,86期, pp.26-49,2001.4。
    [29]K. R. Demarest, “Engineering Electromagnetics,” Prentice Hall , Inc., USA, pp.642, 1998.
    [30]陳錫桓, “電磁學”,建宏,台北市, pp.297-335,1995.3。
    [31]J. D. Glover, and M. Sarma, “Power System Analysis And Design, and Second Edition,” PWS, Boston, pp.463-491,1994.
    [32]S. Cho, S. H. Kim, D. L. Kim, K. H. Im, H. S. Yang, D. H. Kim, and W. M. Jung, “Calculation of Alternating Current Distribution on the Current Lead for HTS Power Cable,” IEEE Transactions on Applied Superconductivity, Vol. 14, Issue 2, pp.662 - 665, June 2004.
    [33]N. O. Sadiku, “Elements of Electromagnetics, Third Edition,” Oxford University Press, New York, pp.336-347,2001.
    [34]H. Knoepfel, “Pulsed High Magnetic Fields,” North-Holland, Amsterdam, pp.312-324, 1970.
    [35]顏世雄, “接地工程”,驫禾文化,台北, pp.80-105,2004.4。
    [36]L. Yu, “Quick Evaluation of Voltage Surge in Electrical Power Systems,” IEEE Transactions on Industry Applications, Vol. 31, No. 2, pp.379-383, March 1995.
    [37]H. Kr. Hoidalen, “ATPDraw for Windows 3.1x/95/NT version 1.0 User’s manual,” November 1998.
    [38]I. M. Dudurych, T. J. Gallagher, J. Corbett, and M. Val Escudero, “EMTP Analysis of the Lightning Performance of a HV Transmission Line,” IEE Transm. Distrib., Vol.150, pp.501-506,2003.
    [39]J. F. Ren, J. D. Duan, B. H. Zhang, and P. Li, “Identification of Lightning Disturbance in Ultra-High-Speed Transmission Line Protection,” 2005 IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific, 15-18,pp.1-5, August 2005.
    [40]“架空輸電線路準則”,台灣電力公司,2002。
    [41]王瑋民, 陳建富, “台南科學園區鄰近線路遭雷擊導致電壓驟降分析與防制”, 台電綜合研究所, 2003.11。
    [42]陳建富,王瑋民,“線路雷擊模型參數對南科電壓驟降影響及保護協調分析”,台電94年度研究報告, 2005.10。
    [43]J. R. Marti, L. Marti, and H. W. Dommel, “Traiisinissiori Line Models for Steady- State and Transients Analysis,” Athens Power Tech, 1993. APT 93. Proceedings. Joint International Power Conference, Vol. 2, pp.744 – 750, September 5-8, 1993.
    [44]A. J. Eriksson, “The Incidence of Lightning Strikes to Power Lines,”IEEE Transactions on Power Delivery, Vol. 2, pp.859-870, July 1987.

    下載圖示 校內:2007-08-04公開
    校外:2009-08-04公開
    QR CODE