簡易檢索 / 詳目顯示

研究生: 許嘉玲
Hsu, Chia-Ling
論文名稱: 以SOPC設計與實現小人形機器人之動態平衡控制
Design and Implementation of SOPC Based Dynamic Balanced Control for Small Size Humanoid Robot
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 69
中文關鍵詞: 人形機器人動態平衡控制器
外文關鍵詞: humanoid robot, fuzzy logic controller(FLC), zero moment point(ZMP), center of pressure(COP)
相關次數: 點閱:132下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討小型人形機器人行為模式規劃方法,包含行走、轉彎、側移、踢球、投球、舉重等運動模式,以及機器人自我平衡控制設計。我們透過感知回授的概念將裝置於機器人身上的加速度計與壓力感測器的感知訊號與模糊控制器結合設計一動態平衡控制器,以加強機器人活動的穩定性與適應未知環境的強健性。論文詳細介紹本實驗室所設計的第二代小型人形機器人的整個系統架構,包含機械結構設計與改進之處、核心處理器、影像處理裝置、感測器及電源整合電路與動態平衡控制器的設計方法。最後,透過行走於不平坦路面、舉重、前後走與避障等實驗以驗証本文所提出方法的可行性。

    The whole system structure of the second generation of the small size humanoid robot (aiRobot) in our laboratory will be introduced in the thesis in detail. It contains the design and amendment of the mechanical structure, center process unit, image process unit, sensors, and the integrated power circuit board. And all performances will be implemented using the SOPC chip, Altera EP1C12F324C8. The first contribution of this thesis is mainly the planned method of behavior modes of a small sized humanoid robot. The behavior modes include walking, turning, kicking, throwing, and weight lifting. The second contribution is the design of the self-balanced control of the robot. According to the concept of sensory reflex, we combine the signals of the accelerometers and force sensors with a fuzzy controller to design a dynamic balanced controller for the humanoid robot. Through the implementation of the controller, we can strengthen the activity stability and the robustness of adapting to an unknown environment. Finally, the experiment results show that the robot can walk on an uneven floor, execute weight lifting, move forwards and backwards, and reach the goal with obstacle avoidance.

    Abstract Ⅰ Acknowledgment Ⅲ Contents Ⅳ List of Figures Ⅵ List of Tables Ⅹ Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 3 Chapter 2. Mechanism and Hardware of the Humanoid Robot 4 2.1 Introduction 4 2.2 Design of Mechanism 7 2.3 The Hardware of the Robot 8 2.3.1 Actuator 8 2.3.2 Central Process Unit 9 2.3.3 Image Device 11 2.3.4. Power and Circuit Design 13 2.4 Sensors 15 2.4.1 Accelerometer 15 2.4.2 Force Sensor 18 2.5 Summary 20 Chapter 3. Concept and Design of Dynamic Balanced Control 21 3.1 Introduction 21 3.2 The Overview of System Structure 23 3.3 The Design and Generation of Motion Patterns 24 3.3.1 The Concept of Stable Criterion-ZMP(Zero-Moment Point) 24 3.3.2 The Design Procedures of Motion Patterns 26 3.4 The Realization of Dynamic Balanced Control 34 3.4.1 The Concept of a Fuzzy Logic Controller (FLC) 35 3.4.2 Move Forwards and Backwards with Dynamic Balanced Control 37 3.4.3 Weight Lifting 45 3.4.4 Lift and Carry 50 3.4.5 Obstacle Run 52 3.5 Summary 55 Chapter 4. Experimental Results 56 4.1 Introduction 56 4.2 Experiment Result 57 4.2.1 Move Forwards and Backwards 57 4.2.2 Weight Lifting 57 4.2.3 Walks on an Uneven Terrain 58 4.2.4 Obstacle Run 58 Chapter 5. Conclusions and Future Works 63 5.1 Conclusion 63 5.2 Future Works 64 References 65 Biography 69

    [1] I. Kato, S. Matsushita, T. Ishida, and K. Kume, “Development of artificial rubber muscles,” in Proc. Third Int. Symp. External Control of Human Extremities, pp. 565–582, 1970.
    [2] H. Miura and I. Shimoyama, “Dynamic walking of a biped,” Int. J. Robot. Res., Vol. 3, No. 2, pp. 60–74, 1984.
    [3] J. Yamaguchi, A. Takanishi, “Design of biped walking robots having antagonistic driven joints using nonlinear spring mechanism,” in Proc. of the 1997 IEEE/RSJ, Vol. 1, pp. 251-259, Sept. 1997.
    [4] S. M. Song and K. J. Waldron, “ An analytical approach for gait and its application on wave gaits,” Int. J. Robot. Res., Vol. 6, No. 2, pp. 60–71, 1987.
    [5] C. K. Ahn, M. C. Lee, and S. J. Go, “Development of a biped robot with toes to improve gait pattern,” in Proc. 2003 IEEE/ASME Advanced Intelligent Mechatronics, Vol. 2, pp. 729-734, Jul. 2003.
    [6] F. Erbatur, A. Okazaki, K. Obiya,T. Takahashi, and A. Kawamura, “A study on the zero moment point measurement for biped walking robots,” in Proc. 7th Int. Workshop on Advanced Motion Control, pp. 431–436, 2002.
    [7] A. Takanishi, M. Ishida, Y. Yamazaki, and I. Kato, “ The realization of dynamic walking robot WL-10RD,” in Proc. Int. Conf. on Advanced Robotics, pp. 459–466, 1985
    [8] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “ The development of Honda humanoid robot,” in Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1321–1326, 1998
    [9] M. Vukobratovic, B. Brovac, D. Surla, and D.Stokic, Biped Locomotion, Springer-Verlag, 1990.
    [10] T. Narukawa, M. Takahashi, and K. Yoshida, “Biped locomotion on level ground by torso and swing-leg control based on passive-dynamic walking,” in Proc. Int. Conf. 2005 IEEE/RSJ Intelligent Robots and Systems, pp. 4009-4014, Aug. 2005.
    [11] J. K. Hodgins and M. H. Raibert, “Adjusting step length for rough terrain locomotion,” 1991 IEEE Trans. Robot. Automat., Vol. 7, pp. 289–298, Jun. 1991.
    [12] M. Cao. and A. Kawamura, “Generation of humanoid biped walking pattern using neural oscillatory network,” in Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics '97, pp. 81, Jun. 1997.
    [13] L. Jalics, H. Hemami, and Y. F. Zheng, “Pattern generation using coupled oscillators for robotic and biorobotic adaptive periodic movement,” in Proc. 1997 IEEE Int. Conf. on Robotics and Automation, 1997, vol. 1, pp. 179-184, Apr. 1997.
    [14] M. Cao and A. Kawamura, “An evolutionary design scheme of neural oscillatory network for generation of biped walking patterns,” Advanced Motion Control, 1998. AMC '98-Coimbra., 1998 5th Int. Workshop, pp. 666-671, Jul. 1998
    [15] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and K. Tanie, “Planning walking patterns for a biped robot,” Robotics and Automation, IEEE Trans., Vol. 17, pp. 280-289, Jun. 2001.
    [16] T. Ishida, Y. Kuroki, and T. Takahashi, “Analysis of motions of a small biped entertainment robot,” in Proc. 2004 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2004. (IROS 2004).Vol. 1, pp. 142-147, Oct. 2004
    [17] P. Sardain and G. Bessonnet, “Zero moment point-measurements from a human walker wearing robot feet as shoes,” Systems, Man and Cybernetics, Part A, IEEE Trans., Vol. 34, pp. 638-648, Sept. 2004.
    [18] M. Morisawa, T. Yakoh, T. Murakami, and K. Ohnishi, “A comparison study between parallel and serial linked structures in biped robot system,” Industrial Electronics Society, 2000. IECON 2000. 26th Annual Conf. of the IEEE, Vol. 4, pp. 2614-2619, Oct. 2000.
    [19] Q. Huang, and Y. Nakamura, “Sensory reflex control for humanoid walking,” Robotics, IEEE Trans., Vol. 21, pp. 977-984, Oct. 2005.
    [20] Q. Huang, W. M. Zhang, and K. Li, “Sensory reflex for biped humanoid walking,” in Proc. 2004 Int. Conf. on Intelligent Mechatronics and Automation, 2004., pp. 83-88, Aug. 2004.
    [21] Q. Huang, S. Kajita, N. Koyachi, K. Kaneko, K. Yokoi, T. Kotoku, H. Arai, K. Komoriya, and K. Tanie, “Walking patterns and actuator specifications for a biped robot,” in Proc. 1999 IEEE/RSJ Int. Conf., Intelligent Robots and Systems, 1999. IROS '99.vol. 3, pp. 1462-1468, Oct. 1999.
    [22] Q. Huang, K. Li, Y. Nakamura, and T. Kazuo, “Analysis of physical capability of a biped humanoid: walking speed and actuator specifications,” in Proc. 2001 IEEE/RSJ Int. Conf., Intelligent Robots and Systems, 2001. Vol. 1, pp. 253-258, Nov. 2001.
    [23] P. Sardain and G. Bessonnet, “Forces acting on a biped robot. Center of pressure-zero moment point,” Systems, Man and Cybernetics, Part A, IEEE Trans., Vol. 34, pp. 630-637, Sep. 2004.
    [24] A. Goswami, “Foot rotation indicator (FRI) point: a new gait planning tool to evaluate postural stability of biped robots,” in Proc. 1999 IEEE Int. Conf., Robotics and Automation, 1999., Vol. 1, pp. 47-52, May 1999.
    [25] P. Sardain and G. Bessonnet, “Zero moment point-measurements from a human walker wearing robot feet as shoes,” Systems, Man and Cybernetics, Part A, IEEE Trans., Vol. 34, pp. 638-648, Sep. 2004.
    [26] D. Kim, S. J. Seo, and G. T. Park, “Zero-moment point trajectory modelling of a biped walking robot using an adaptive neuro-fuzzy system,” in Proc. IEE Control Theory and Applications,, Vol. 152, pp. 411-426, Jul. 2005.
    [27] F. Asano, M. Yamakita, N. Kamamichi, and Z. W. Luo, “A novel gait generation for biped walking robots based on mechanical energy constraint,” Robotics and Automation, IEEE Trans., Vol. 20, pp. 565-573, Jun 2004.
    [28] A. E. Patla, “Strategies for dynamic stability during adaptive human locomotion,” Engineering in Medicine and Biology Magazine, IEEE, Vol. 22, pp. 48-52, Mar.-Apr. 2003.
    [29] F. Gravez, B. Mohamed, and F. B. Ouezdou, “Dynamic simulation of a humanoid robot with four DOFs torso,” in Proc. ICRA '02. IEEE Int. Conf., Robotics and Automation, 2002., Vol. 1, pp. 511-516, May 2002.
    [30] P. Gorce, and O. Vanel, “High level strategy to control the dynamic evolutions of bipedal postures,” Systems, Man, and Cybernetics, 1996., IEEE Int. Conf., Vol. 2, pp. 1459-1464, Oct. 1996.
    [31] F. Gubina, H. Hemami, and R. B. McGhee, “On the dynamic stability of biped locomotion,” IEEE Trans. Bio-Med. Eng., Vol. BME-21, No. 2, pp. 102–108, 1974.
    [32] O. Matsumoto, S. Kajita, M. Saigo, and K. Tani, “Dynamic trajectory control of passing over stairs by a biped type leg-wheeled robot with nominal reference of static gait,” in Proc., 1998 IEEE/RSJ Int. Conf., Intelligent Robots and Systems, 1998.Vol. 1, pp. 406-412, Oct. 1998.
    [33] J. S. Yang and A. Shahabuddin, “Trajectory planning and control for a five-degree-of-freedom biped locomotion system,” American Control Conf., Vol. 3, pp. 3105-3109, 29 Jun.-Jul., 1994.
    [34] T. G. McGee and M. W. Spong, “Trajectory planning and control of a novel walking biped,” in Proc. of the 2001 IEEE Int. Conf., Control Applications, 2001. (CCA '01).pp. 1099-1104, Sep. 2001.
    [35] H. O. Lim, Y. Yamamoto, and A. Takanishi, “Control to realize human-like walking of a biped humanoid robot,” Systems, Man, and Cybernetics, 2000 IEEE Int. Conf., Vol. 5, pp. 3271-3276, Oct. 2000.
    [36] S. Ito, Y. Aoyama, and H. Kawasaki, “A static balance control under periodic external force,” SICE 2003 Annual Conf., Vol. 2, pp. 1967-1972, Aug. 2003.
    [37] M. N Raibert, Legged Robots That Balance. Cambridge, MA: MIT Press, 1986.
    [38] http://www.fira.net/
    [39] http://www.robocup.org/
    [40] http://world.honda.com/ASIMO/
    [41] http://www.sony.net/SonyInfo/QRIO/top_nf.html
    [42] http://www.kondo-robot.com/
    [43] http://times.hankooki.com/lpage/tech/200411/kt2004112316265112350.htm
    [44] http://www.kawada.co.jp/global/ams/hrp_2.html
    [45] http://www.altera.com
    [46] 王文俊, “認識Fuzzy,” 全華科技圖書股份有限公司, 2001年.
    [47] 郭呈祥,人形機器人之行為模式步伐控制器之設計與實現,國立成功大學電機系碩士論文,2006
    [48] 蘇育德,人形機器人之視覺與控制系統之發展與實現,國立成功大學電機系碩士論文,2006
    [49] http://www.memsic.com/memsic/data/products/MXD2125G&M/
    MXD2125G&M.pdf
    [50] http://www.parallax.com/dl/docs/prod/acc/memsickit.pdf
    [51] http://www.memsic.com/memsic/pdfs/an-00mx-007.pdf
    [52] ..P. Sardain, G. Bessonnet,“Zero moment point-measurements from a human walker wearing robot feet as shoes,” IEEE Trans. Systems, Man and Cybernetics, Part A, Vol. 34. No. 5, pp. 638-648, Sep.2004.
    [53] ..Q. Huang, K. Kaneko, et al., “Balance Control of a Biped Robot Combining Off-line Pattern with Real-time Modification,” in Proc. IEEE Int. Conf. Robotics and Automation, pp.3346-3352, Apr. 2000.
    [54] ..P. Sardain, G. Bessonnet,“Forces acting on a biped robot. Center of pressure-zero moment point,”IEEE Trans Systems, Man. Cybernetics, Part A, Vol.34, pp.630–372, Sep. 2004.

    下載圖示 校內:2010-08-01公開
    校外:2012-08-01公開
    QR CODE