簡易檢索 / 詳目顯示

研究生: 侯衣宸
Hou, Yi-Chen
論文名稱: 結合萊維飛行與隨機漫步之改良式螢火蟲演算法於撓性關節路徑產生機構之最佳化設計
A Modified Firefly Algorithm with Lévy Flight and Random Walk for Optimal Design of Path Generating Mechanisms with Compliant Joints
指導教授: 劉至行
Liu, Chih-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 159
中文關鍵詞: 螢火蟲演算法萊維飛行隨機漫步撓性關節連桿機構路徑合成尺寸最佳化
外文關鍵詞: Firefly algorithm, Lévy flight, Random walk, Compliant joint, Linkage mechanism, Path synthesis, Size optimization
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將萊維飛行與隨機漫步結合至螢火蟲演算法,提出結合萊維飛行與隨機漫步之改良式螢火蟲演算法,並使用十二個最佳化測試函數為範例,比較螢火蟲演算法、萊維飛行之螢火蟲演算法、修正螢火蟲算法、結合萊維飛行與隨機漫步之改良式螢火蟲演算法等四種演算法的最佳化結果。結果顯示,本研究所提出的結合萊維飛行與隨機漫步之改良式螢火蟲演算法在中低維度的搜索空間中,具有較佳的搜索能力。本研究同時針對四連桿機構與八連桿Jansen機構之模型,將其剛性旋轉接頭替換成由兩段直線與一段圓弧所組成的撓性關節,並提出一套設計具有撓性關節的路徑產生機構的最佳化方法,此方法結合演算法與有限元素分析軟體ANSYS,將機構進行尺寸最佳化,藉此設計出符合特定目標軌跡的撓性關節連桿機構。其中,撓性關節四連桿機構範例根據設計變數的不同分成兩個案例,而撓性關節八連桿機構範例則根據撓性關節的數量區分成一組、三組、五組撓性關節之八連桿機構。結果顯示此方法可有效的設計出符合目標軌跡的撓性關節連桿機構。

    This study proposes a new algorithm that combines Lévy flight and random walk into the firefly algorithm, and uses twelve test functions to evaluate the optimization results from four algorithms, including the firefly algorithm (FA), the Lévy-flight firefly algorithm (LFA), the modified firefly algorithm (MFA), and the modified firefly algorithm with Lévy flight and random walk (LMFA). The results show that the proposed modified firefly algorithm with Lévy flight and random walk has superior search capabilities in low and medium-dimensional search space. In addition, this study replaces the revolute joint with a compliant joint, which consists of two straight lines and a circular arc, for the four-bar linkage and the eight-bar Jansen's linkage. This study also proposes a method to synthesize path-generation mechanisms with compliant joints. The method combines the proposed heuristic algorithm and the finite element analysis software ANSYS, to design linkage mechanisms with compliant joints that conform to a specific target path. The four-bar linkage with a compliant joint is divided into two cases according to different design variables. The eight-bar linkage with compliant joints is divided into three cases according to the number of compliant joints, including one compliant joint, three compliant joints, and five compliant joints. The results show that the proposed method can effectively design linkage mechanisms with compliant joints that conform to the target paths.

    摘要 i ABSTRACT ii 致謝 xx 目錄 xxi 表目錄 xxv 圖目錄 xxviii 符號說明 xxxi 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 螢火蟲演算法文獻回顧 2 1-2-2 布穀鳥搜尋演算法文獻回顧 4 1-2-3 機構尺寸最佳化文獻回顧 5 1-2-4 撓性機構文獻回顧 7 1-3 研究目的 8 1-4 本文架構 9 第二章 啟發式演算法 10 2-1 前言 10 2-2 螢火蟲演算法 10 2-2-1 螢火蟲生物行為 11 2-2-2 螢火蟲演算法數學模型 11 2-2-3 螢火蟲演算法流程 13 2-3 布穀鳥搜尋演算法 15 2-3-1 布穀鳥生物行為 15 2-3-2 隨機漫步 16 2-3-3 萊維飛行 17 2-3-4 布穀鳥搜尋演算法數學模型 18 2-3-5 布穀鳥搜尋演算法流程 20 2-4 本章小結 21 第三章 改良式螢火蟲演算法 22 3-1 前言 22 3-2 萊維飛行之螢火蟲演算法 22 3-2-1 萊維飛行之螢火蟲演算法數學模型 22 3-2-2 萊維飛行之螢火蟲演算法流程 24 3-3 修正螢火蟲演算法 26 3-3-1 修正螢火蟲演算法數學模型 26 3-3-2 修正螢火蟲演算法流程 27 3-4 結合萊維飛行與隨機漫步之改良式螢火蟲演算法 29 3-4-1 結合萊維飛行與隨機漫步之改良式螢火蟲演算法之特性 29 3-4-2 結合萊維飛行之修正螢火蟲演算法流程 30 3-5 本章小結 31 第四章 演算法比較 32 4-1 前言 32 4-2 測試函數 32 4-3 結果與比較 37 4-3-1 2 維測試函數 37 4-3-2 10 維測試函數 44 4-3-3 60 維測試函數 51 4-3-4 結果比較與討論 58 4-4 本章小結 59 第五章 撓性關節連桿機構尺寸最佳化設計 60 5-1 前言 60 5-2 撓性關節連桿機構尺寸最佳化流程 61 5-3 撓性關節四連桿機構範例 64 5-3-1 幾何模型建立與初始位置分析 65 5-3-2 最佳化參數設計 67 5-3-3 目標函數 70 5-3-4 限制函數 74 5-3-5 有限元素分析 75 5-3-6 尺寸最佳化結果 78 5-4 一組撓性關節之八連桿機構範例 88 5-4-1 幾何模型建立 89 5-4-2 最佳化參數設計 93 5-4-3 目標函數 95 5-4-4 限制函數 97 5-4-5 有限元素分析 99 5-4-6 尺寸最佳化結果 102 5-5 三組撓性關節之八連桿機構範例 108 5-5-1 幾何模型建立 109 5-5-2 最佳化參數設計 115 5-5-3 目標函數 116 5-5-4 限制函數 118 5-5-5 有限元素分析 120 5-5-6 尺寸最佳化結果 123 5-6 五組撓性關節之八連桿機構範例 129 5-6-1 幾何模型建立 130 5-6-2 最佳化參數設計 137 5-6-3 目標函數 139 5-6-4 限制函數 140 5-6-5 有限元素分析 142 5-6-6 尺寸最佳化結果 145 5-7 本章小結 152 第六章 結論與建議 153 6-1 結論 153 6-2 建議 154 參考文獻 156

    [1] X.-S. Yang, "Firefly algorithms for multimodal optimization," in International symposium on stochastic algorithms, 2009: Springer, pp. 169-178.
    [2] X.-S. Yang, "Firefly Algorithm, Lévy Flights and Global Optimization," London, 2010: Springer London, in Research and Development in Intelligent Systems XXVI, pp. 209-218.
    [3] S. M. Farahani, A. A. Abshouri, B. Nasiri, and M. Meybodi, "A Gaussian firefly algorithm," International Journal of Machine Learning and Computing, vol. 1, no. 5, p. 448, 2011.
    [4] L. dos Santos Coelho, D. L. de Andrade Bernert, and V. C. Mariani, "A chaotic firefly algorithm applied to reliability-redundancy optimization," in 2011 IEEE congress of evolutionary computation (CEC), 2011: IEEE, pp. 517-521.
    [5] A. H. Gandomi, X.-S. Yang, S. Talatahari, and A. H. Alavi, "Firefly algorithm with chaos," Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 1, pp. 89-98, 2013.
    [6] B. Wang, D.-X. Li, J.-P. Jiang, and Y.-H. Liao, "A modified firefly algorithm based on light intensity difference," Journal of Combinatorial Optimization, vol. 31, no. 3, pp. 1045-1060, 2016.
    [7] 王秋閔, "修正螢火蟲演算法於路徑產生機構之最佳化尺寸合成," 國立成功大學機械工程學系碩士學位論文, 2018.
    [8] C.-F. Wang and W.-X. Song, "A novel firefly algorithm based on gender difference and its convergence," Applied Soft Computing, vol. 80, pp. 107-124, 2019.
    [9] J. Liu, Y. Mao, X. Liu, and Y. Li, "A dynamic adaptive firefly algorithm with globally orientation," Mathematics and Computers in Simulation, vol. 174, pp. 76-101, 2020.
    [10] X.-S. Yang and S. Deb, "Cuckoo search via Lévy flights," in 2009 World congress on nature & biologically inspired computing (NaBIC), 2009: IEEE, pp. 210-214.
    [11] S. Walton, O. Hassan, K. Morgan, and M. Brown, "Modified cuckoo search: a new gradient free optimisation algorithm," Chaos, Solitons & Fractals, vol. 44, no. 9, pp. 710-718, 2011.
    [12] H. Zheng and Y. Zhou, "A novel cuckoo search optimization algorithm based on Gauss distribution," Journal of Computational Information Systems, vol. 8, no. 10, pp. 4193-4200, 2012.
    [13] S. Roy, A. Mallick, S. S. Chowdhury, and S. Roy, "A novel approach on cuckoo search algorithm using Gamma distribution," in 2015 2nd International Conference on Electronics and Communication Systems (ICECS), 2015: IEEE, pp. 466-468.
    [14] M. Mareli and B. Twala, "An adaptive Cuckoo search algorithm for optimisation," Applied Computing and Informatics, vol. 14, no. 2, pp. 107-115, 2018.
    [15] R. Chi, Y.-X. Su, D.-H. Zhang, X.-X. Chi, and H.-J. Zhang, "A hybridization of cuckoo search and particle swarm optimization for solving optimization problems," Neural Computing and Applications, vol. 31, no. 1, pp. 653-670, 2019.
    [16] J. Cabrera, A. Simon, and M. Prado, "Optimal synthesis of mechanisms with genetic algorithms," Mechanism and Machine Theory, vol. 37, no. 10, pp. 1165-1177, 2002.
    [17] P. Shiakolas, D. Koladiya, and J. Kebrle, "On the optimum synthesis of four-bar linkages using differential evolution and the geometric centroid of precision positions," Inverse Problems in Engineering, vol. 10, no. 6, pp. 485-502, 2002.
    [18] P. Shiakolas, D. Koladiya, and J. Kebrle, "On the optimum synthesis of six-bar linkages using differential evolution and the geometric centroid of precision positions technique," Mechanism and Machine Theory, vol. 40, no. 3, pp. 319-335, 2005.
    [19] A. Smaili and N. Diab, "Optimum synthesis of hybrid-task mechanisms using ant-gradient search method," Mechanism and Machine Theory, vol. 42, no. 1, pp. 115-130, 2007.
    [20] N. Diab and A. Smaili, "Optimum exact/approximate point synthesis of planar mechanisms," Mechanism and Machine Theory, vol. 43, no. 12, pp. 1610-1624, 2008.
    [21] S. Acharyya and M. Mandal, "Performance of EAs for four-bar linkage synthesis," Mechanism and Machine Theory, vol. 44, no. 9, pp. 1784-1794, 2009.
    [22] J. Cabrera, A. Ortiz, F. Nadal, and J. Castillo, "An evolutionary algorithm for path synthesis of mechanisms," Mechanism and Machine Theory, vol. 46, no. 2, pp. 127-141, 2011.
    [23] S. B. Matekar and G. R. Gogate, "Optimum synthesis of path generating four-bar mechanisms using differential evolution and a modified error function," Mechanism and Machine Theory, vol. 52, pp. 158-179, 2012.
    [24] R. R. Bulatović, S. R. Đorđević, and V. S. Đorđević, "Cuckoo search algorithm: a metaheuristic approach to solving the problem of optimum synthesis of a six-bar double dwell linkage," Mechanism and Machine Theory, vol. 61, pp. 1-13, 2013.
    [25] 林孟弦, "模仿人類爬梯步態之創新八連桿足型機構最佳設計與多足爬梯機器人設計之研究," 國立成功大學機械工程學系碩士學位論文, 2016.
    [26] L. L. Howell, A. Midha, and T. W. Norton, Evaluation of equivalent spring stiffness for use in a pseudo-rigid-body model of large-deflection compliant mechanisms. 1996.
    [27] H.-J. Su, "A load independent pseudo-rigid-body 3R model for determining large deflection of beams in compliant mechanisms," International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 43260, pp. 109-121, 2008.
    [28] Y.-Q. Yu, Z.-L. Feng, and Q.-P. Xu, "A pseudo-rigid-body 2R model of flexural beam in compliant mechanisms," Mechanism and Machine Theory, vol. 55, pp. 18-33, 2012.
    [29] Y.-Q. Yu, Q.-P. Xu, and P. Zhou, "New PR pseudo-rigid-body model of compliant mechanisms subject to combined loads," Journal of Mechanical Engineering, vol. 49, no. 15, pp. 9-14, 2013.
    [30] Y.-Q. Yu and S.-K. Zhu, "5R pseudo-rigid-body model for inflection beams in compliant mechanisms," Mechanism and Machine Theory, vol. 116, pp. 501-512, 2017.
    [31] M. H. Dado, "Variable parametric pseudo-rigid-body model for large-deflection beams with end loads," International Journal of Non-Linear Mechanics, vol. 36, no. 7, pp. 1123-1133, 2001.
    [32] S. M. Lyon and L. L. Howell, "A simplified pseudo-rigid-body model for fixed-fixed flexible segments," International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 36533, pp. 23-33, 2002.
    [33] C. Kimball and L.-W. Tsai, "Modeling of flexural beams subjected to arbitrary end loads," Journal of Mechanical Design, vol. 124, no. 2, pp. 223-235, 2002.
    [34] P. Kuresangsai and M. O. Cole, "Kinematic modeling and design optimization of flexure-jointed planar mechanisms using polynomial bases for flexure curvature," Mechanism and Machine Theory, vol. 132, pp. 80-97, 2019.
    [35] K. Xu, H. Liu, and J. Xiao, "Static deflection modeling of combined flexible beams using elliptic integral solution," International Journal of Non-Linear Mechanics, vol. 129, p. 103637, 2021.
    [36] K. Xu, H. Liu, W. Yue, J. Xiao, Y. Ding, and G. Wang, "Kinematic modeling and optimal design of a partially compliant four-bar linkage using elliptic integral solution," Mechanism and Machine Theory, vol. 157, p. 104214, 2021.
    [37] D. E. Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning," ed: Addison-Wesley Longman Publishing Co., Inc., 1989.
    [38] J. Kennedy and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN'95-International Conference on Neural Networks, vol. 4, pp. 1942-1948, 1995.
    [39] S. Ruder, "An overview of gradient descent optimization algorithms," ArXiv Preprint ArXiv:1609.04747, 2016.
    [40] T. J. Ypma, "Historical development of the Newton–Raphson method," SIAM Review, vol. 37, no. 4, pp. 531-551, 1995.
    [41] S. I. Rothstein, "Mechanisms of avian egg recognition: possible learned and innate factors," The Auk, vol. 91, no. 4, pp. 796-807, 1974.
    [42] S. I. Rothstein, "Mechanisms of avian egg-recognition: do birds know their own eggs?," Animal Behaviour, vol. 23, pp. 268-278, 1975.
    [43] C. Moskát and M. E. Hauber, "Conflict between egg recognition and egg rejection decisions in common cuckoo (Cuculus canorus) hosts," Animal Cognition, vol. 10, no. 4, pp. 377-386, 2007.
    [44] X.-S. Yang, Nature-inspired metaheuristic algorithms. Luniver press, 2010.
    [45] K. Pearson, "The problem of the random walk," Nature, vol. 72, no. 1865, pp. 294-294, 1905.
    [46] P. Barthelemy, J. Bertolotti, and D. S. Wiersma, "A Lévy flight for light," Nature, vol. 453, no. 7194, pp. 495-498, 2008.
    [47] P. Lévy, Théorie de l'addition des variables aléatoires. Gauthier-Villars, 1954.
    [48] A. M. Reynolds and M. A. Frye, "Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search," PloS one, vol. 2, no. 4, p. e354, 2007.
    [49] C. T. Brown, L. S. Liebovitch, and R. Glendon, "Lévy flights in Dobe Ju/’hoansi foraging patterns," Human Ecology, vol. 35, no. 1, pp. 129-138, 2007.
    [50] M. Molga and C. Smutnicki, "Test functions for optimization needs," Test Functions for Optimization Needs, vol. 101, p. 48, 2005.
    [51] S. Surjanovic and D. Bingham. Virtual Library of Simulation Experiments: Test Functions and Datasets, http://www.sfu.ca/~ssurjano.
    [52] C.-H. Liu, Y. Chen, and S.-Y. Yang, "Quantification of hyperelastic material parameters for a 3D-Printed thermoplastic elastomer with different infill percentages," Materials Today Communications, vol. 26, p. 101895, 2021.
    [53] Jansen's linkage 維基百科網頁, https://en.wikipedia.org/wiki/Jansen%27s_linkage.

    無法下載圖示 校內:2027-09-14公開
    校外:2027-09-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE